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Founding Editors: W. Beiglböck, J. Ehlers, K. Hepp, H. Weidenmüller

Editorial Board

R. Beig, Vienna, Austria
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Preface

The study of the mechanisms that govern origin and propagation of stellar
jets involves the treatment of many concurrent physical processes such as
gravitation, hydrodynamics and magnetohydrodynamics, atomic physics and
radiation. In the past years, an intensive work has been done looking for solu-
tions of the ideal MHD equations in the steady state limit as well as studying
the stability of outflows in the linear regime. These kind, of approaches have
provided a contribution to the understanding of jets that can hardly be over-
estimated. However, the extension of the analyses to the time-dependent and
nonlinear regimes could not be avoided, and the MHD numerical simulations
were the only mean to achieve this goal.

In the recent years, considerable progresses have been made by the compu-
tational fluid dynamic community in the development of numerical techniques,
the so-called high resolution shock capturing schemes, well suited for the treat-
ment of supersonic flows with discontinuities. The numerical simulations of
astrophysical jets took advantage of these developments; however new physics
needed to be incorporated, such as magnetic field effects, radiation losses by
diluted gases, and proper astrophysics environments. These needs led to the
nontrivial extension of the methods devised for the Euler equations of gas-
dynamics to the magneto-hydrodynamical system. On the other hand, the
possibility of carrying out numerical calculations has been greatly facilitated
by the availability, on one hand, of powerful supercomputers and, on the other
hand, of fast processors at low cost. Large scale 3D simulations of jets at high
resolution are now possible thanks to supercomputers, but also high resolu-
tion 2D MHD simulations can be performed routinely on desktop computers.
These possibilities have greatly extended our understanding of jets, and nu-
merical simulations are now an essential tool for investigating the physics of
such objects.

This book collects the lectures from the third JETSET school, Jets from
Young Stars III: Numerical MHD and Instabilities, held in Sauze d’Oulx in
January 2007. The aim of this school was to introduce PhD students and
young researchers to the basic methods in computational hydrodynamics and
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magneto-hydrodynamics as well as to review some of the most relevant insta-
bilities in astrophysical outflows.

The book is divided in two parts. In the first one, Eleuterio Toro presents
and discusses the basic numerical methods in hydrodynamics, their stabil-
ity, monotonicity and accuracy properties, and introduces different Riemann
solvers and flux limiter methods. Andrea Mignone and Gianluigi Bodo then
extend the discussion to MHD, examining, in particular, the various methods
devised to overcome the numerical difficulties intrinsic to the MHD equations.
The second part is devoted to hydrodynamic and MHD instabilities, such as
the Kelvin–Helmholtz instabilities, treated by Edoardo Trussoni, the pressure
driven instabilities, by Pierre-Yves Longaretti, the thermal instabilities, by
Gianluigi Bodo, and the instabilities in radiative shocks, by Andrea Mignone.

The editors are grateful to the lecturers for their presentations and efforts
to contribute to this book, and to Ovidiu Tesileanu and Titos Matsakos that
have been of great help in the organization of the school. Thanks also to Eileen
Flood and Gabriella Ardizzoia for their precious help in managing the life of
the participants during the days of the school. The editors acknowledge the
invaluable contribution and support by Emma Whelan for taking care of the
book editing.

Torino Silvano Massaglia
Andrea Mignone

Pino Torinese Gianluigi Bodo
Paola Rossi
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Computational Methods for Hyperbolic
Equations

E.F. Toro

Laboratory of Applied Mathematics, Department of Civil and Environmental
Engineering, University of Trento, Trento, Italy,
toro@ing.unitn.it

Abstract. This is an introduction to some of the basic concepts on modern numer-
ical methods for computing approximate solutions to hyperbolic partial differential
equations. This chapter is divided into five sections. Section 1 contains a review of
some elementary theoretical concepts on hyperbolic equations, mainly focused on
the linear case; the Riemann problem for a general linear system with constant coef-
ficients is solved in detail. Section 2 is an introduction to the basics of discretization
methods, including finite difference methods and finite volume methods; concepts
such as local truncation error, linear stability and modified equation are included;
Godunov’s theorem is stated, proved and its implications are discussed. Section 3
contains two approximate Riemann solvers, as applied to the three-dimensional
Euler equations, namely HLLC and EVILIN. Section 4 deals with the construction
of non-linear (non-oscillatory) numerical methods of the TVD and ENO type, for a
scalar conservation law. In Sect. 5 we use the theory developed for scalar equations as
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4 E.F. Toro

a guideline to construct non-linear (quasi non-oscillatory) second-order finite volume
schemes for one-dimensional non-linear systems with source terms. Key references
for further reading are indicated at the end of each section.

Keywords Hyperbolic Equations · Riemann Problem · Godunov Methods ·
Riemann Solvers · Non-linear Schemes · Source Terms

1 Equations

Here we study some very basic properties of hyperbolic equations, starting
from the general setting of hyperbolic balance laws in three space dimensions.
The linear advection equation with constant coefficient and associated char-
acteristic curves are studied in detail. The general initial value problem for
general linear hyperbolic systems is solved, as is the Riemann problem. A few
useful notes on non-linear equations are made. In particular we introduce the
integral form of the conservation laws. This is useful for at least two reasons.
First, hyperbolic equations admit discontinuous solutions even if the initial
data is smooth. Shock waves are formed in finite time. The differential form of
the equations is no longer valid, while the integral form is and accommodates
an extension of the set of admissible solutions. However the extended set of so-
lutions is too large and includes solutions that have no physical value. Entropy
criteria are enforced to select the physically admissible solutions. Then, the
integral form also allows quite directly the construction of numerical methods
of the finite volume type. References for further study are given at the end of
the section. We study some basic concepts on hyperbolic balance laws

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = S(Q), (1)

where

Q =

⎡
⎢⎢⎣

q1

q2

...
qm

⎤
⎥⎥⎦ ,F =

⎡
⎢⎢⎣

f1

f2

...
fm

⎤
⎥⎥⎦ ,G =

⎡
⎢⎢⎣

g1

g2

...
gm

⎤
⎥⎥⎦ ,H =

⎡
⎢⎢⎣

h1

h2

...
hm

⎤
⎥⎥⎦ ,S =

⎡
⎢⎢⎣

s1

s2

...
sm

⎤
⎥⎥⎦ . (2)

The independent variables are x, y, z and t. Q is the vector of dependent
variables, called conserved variables, and are the unknowns of the problem;
F(Q) is the flux vector in the x-direction; G(Q) is the flux vector in the
y-direction; H(Q) is the flux vector in the z-direction; and S(Q) is the vector
of source terms, which are prescribed functions of the unknown Q and no
differential terms are involved here. We use ∂dX to denote the first-order
partial derivative of any vector X with respect to d, for which we also use Xd.
Note that for each component i of the vectors in (2) we have



Computational Methods for Hyperbolic Equations 5

qi = qi(x, y, z, t),
fi = fi(q1(x, y, z, t), . . . , qm(x, y, z, t)),
gi = gi(q1(x, y, z, t), . . . , qm(x, y, z, t)),
hi = hi(q1(x, y, z, t), . . . , qm(x, y, z, t)),
si = si(x, y, z, t, q1(x, y, z, t), . . . , qm(x, y, z, t)).

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

A system like (1) is said to be a system of conservation laws (with source
terms) written in differential conservative form. This form is valid only for
smooth solutions. For solutions with discontinuities, one resorts to the inte-
gral form of the equations, as seen later.

Scalar One-dimensional Examples. A scalar (a single equation) conser-
vation law with source term in one space dimension reads

∂tq + ∂xf(q) = s(q), (3)

where q(x, t) is the conserved variable, f(q) is the flux function and s(q) is
the source term. An equation of the form (3) is said to be homogeneous if the
source term is identically zero; otherwise it is called inhomogeneous. In order
to have a determined equation, we need to define the flux and the source term,
as illustrated in the examples below:

• The (homogeneous) linear advection equation

∂tq + λ∂xq = 0, f(q) = λq (λ, a constant), s(q) = 0. (4)

• The (inhomogeneous) linear advection equation with a source term

∂tq +λ∂xq = βq, f(q) = λq (λ, a constant), s(q) = βq (β, a constant).
(5)

• The inviscid Burgers equation

∂tq + ∂x

(
1
2
q2

)
= 0, f(q) =

1
2
q2, s(q) = 0. (6)

• The traffic flow equation

∂tq + ∂x (umax(1 − q/qmax)q) = 0, f(q) = umax(1 − q/qmax)q, s(q) = 0,
(7)

where umax and qmax are constants.

A System: The Isentropic Euler Equations. The equations in one space
dimension are

∂tQ + ∂xF(Q) = 0, (8)

with

Q =
[

q1

q2

]
≡
[

ρ
ρu

]
, F(Q) =

[
f1

f2

]
≡
[

ρu
ρu2 + p(ρ)

]
. (9)
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Here ρ(x, t) is density, u(x, t) is particle velocity and p(ρ) is pressure. As there
are more unknowns than equations, we need to specify a closure condition,
which is generally done by prescribing the pressure p as a function of density,
p = p(ρ). This closure condition is also named equation of state (EOS); the
example considered is an isentropic EOS.

1.1 The Linear Advection Equation and Characteristics

We consider various forms of scalar linear advection partial differential equa-
tion (PDE) (4) and associated characteristic curves.

Linear Advection with Constant Coefficient

Let us first consider the model homogeneous hyperbolic equation

∂tq + λ∂xq = 0, −∞ < x < ∞, t ≥ 0 (10)

and curves x = x(t) in the x–t half-plane that are associated to the initial-
value problem (IVP) for an ordinary differential equation (ODE) with an
initial condition (IC), namely

ODE :
dx

dt
= λ,

IC : x(0) = x0,

⎫
⎬
⎭ (11)

where x0, called the foot of the characteristic, is the intersection of the curve
x(t) with the x-axis at t = 0. Solutions of (11) are called characteristic curves
and have the form

x = x0 + λt, (12)

which are straight lines. The time rate of change of q(x(t), t) along a charac-
teristic curve x = x(t) is

dq

dt
=

∂q

∂t

dt

dt
+

∂q

∂x

dx

dt
= ∂tq + λ∂xq = 0. (13)

Consequently, the characteristic curves are curves x(t) such that:

• the PDE becomes an ODE along x(t), namely dq/dt = 0 and
• the ODE states that the unknown q(x, t) is constant along the character-

istic curve.

We now consider the general IVP for the linear advection equation

PDE : ∂tq + λ∂xq = 0, −∞ < x < ∞, t > 0,

IC : q(x, 0) = q(0)(x), −∞ < x < ∞,

⎫
⎬
⎭ (14)
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where q(0)(x) is the initial condition for the PDE, a prescribed function of
distance x.

The solution of IVP (14) at any point (x, t) is found by considering the
characteristic curve that passes through the point (x, t) and its foot x0. As
the solution q(x, t) is a constant along the characteristic curve, the q(x, t) is
the same as the initial condition q(x, 0) = q(0)(x) at the initial point x0, that
is q(x, t) = q(0)(x0). Using (12) we get x0 = x − λt and thus the solution can
be written as

q(x, t) = q(0)(x0) = q(0)(x − λt). (15)

Exercise. Verify that the given function q(x, t) is a solution of the problem.

The Riemann Problem

The Riemann problem is the special IVP

PDE : ∂tq + λ∂xq = 0, −∞ < x < ∞, t > 0

IC : q(x, 0) = q(0)(x) =

⎧
⎨
⎩

qL (constant) if x < 0,

qR(constant) if x > 0.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

From (15) the solution is

q(x, t) = q(0)(x − λt) =

⎧
⎪⎨
⎪⎩

qL if x − λt < 0 ⇔ x

t
< λ,

qR if x − λt > 0 ⇔ x

t
> λ.

(17)

That is, the solution of the Riemann problem is

q(x, t) =

⎧
⎪⎨
⎪⎩

qL if
x

t
< λ,

qR if
x

t
> λ.

(18)

Linear Advection with Variable Coefficient

We now consider the general IVP for the linear advection equation with vari-
able coefficient λ(x, t), namely

PDE : ∂tq + λ(x, t)∂xq = 0, −∞ < x < ∞, t > 0,

IC : q(x, 0) = q(0)(x), −∞ < x < ∞,

}
(19)

where again q(0)(x) is a prescribed function of distance x. The characteristics
curves are the solutions of

ODE :
dx

dt
= λ(x, t),

IC : x(0) = x0

⎫
⎬
⎭ (20)

and the curves are no longer straight lines, in general.
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Linear Advection with a Linear Source Term

We now consider the general IVP for the linear advection equation with con-
stant coefficient λ and a linear source term

PDE : ∂tq + λ∂xq = βq, −∞ < x < ∞, t > 0,

IC : q(x, 0) = q(0)(x), −∞ < x < ∞,

⎫
⎬
⎭ (21)

where again q(0)(x) is a prescribed function of distance x, and λ and β are
constants. It is easily seen (verify) that the exact solution is

q(x, t) = q(0)(x − λt)eβt. (22)

1.2 Quasi-linear Form and Hyperbolicity

Consider the general non-linear homogeneous scalar conservation law (3) and
apply the chain rule to the flux term. We obtain

∂tq + ∂xf(q) = ∂tq + ∂qf(q)∂xq = 0, (23)

or

∂tq + λ(q)∂xq = 0, λ(q) = ∂qf(q) =
∂f(q)

∂q
≡ f ′(q). (24)

This is the quasi-linear form of the equation and the coefficient λ(q) is the
characteristic speed, a function of the unknown q.

Also a system can be expressed in quasi-linear form. To illustrate this, we
consider the following non-linear system of two equations

∂tQ + ∂xF(Q) = 0, (25)

where

Q =

⎡
⎣

q1

q2

⎤
⎦ , F(Q) =

⎡
⎣

f1(q1, q2)

f2(q1, q2)

⎤
⎦ . (26)

Applying the chain rule to the flux term for each equation, we have

∂tq1 + ∂q1f1(q1, q2)∂xq1 + ∂q2f1(q1, q2)∂xq2 = 0,

∂tq2 + ∂q1f2(q1, q2)∂xq1 + ∂q2f2(q1, q2)∂xq2 = 0.

⎫
⎬
⎭

In matrix form, the system reads

∂t

⎡
⎣

q1

q2

⎤
⎦+

⎡
⎢⎣

∂f1
∂q1

∂f1
∂q2

∂f2
∂q1

∂f2
∂q2

⎤
⎥⎦ ∂x

⎡
⎣

q1

q2

⎤
⎦ =

⎡
⎣

0

0

⎤
⎦ , (27)
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or
∂tQ + A(Q)∂xQ = 0, (28)

where

A(Q) =
∂F
∂Q

=

⎡
⎢⎣

∂f1
∂q1

∂f1
∂q2

∂f2
∂q1

∂f2
∂q2

⎤
⎥⎦ (29)

is called the Jacobian matrix. For an m×m one-dimensional non-linear system
of the form (25), the quasi-linear form is like (28) with Jacobian matrix

A(Q) =
∂F
∂Q

=

⎡
⎢⎢⎢⎢⎢⎣

∂f1
∂q1

∂f1
∂q2

· · · ∂f1
∂qm

∂f2
∂q1

∂f2
∂q2

· · · ∂f2
∂qm

. . . . . . . . . . . .
∂fm

∂q1

∂fm

∂q2
· · · ∂fm

∂qm

⎤
⎥⎥⎥⎥⎥⎦

. (30)

Eigenvalues and eigenvectors. Recall that the eigenvalues of a matrix A are
the roots of the characteristic polynomial

|A − λI| = 0, (31)

where I is the identity matrix and λ is a parameter. A right eigenvector of A
corresponding to an eigenvalue λ is a vector R such that AR = λR. Similarly,
a left eigenvector of A corresponding to an eigenvalue λ is a vector L such
that LA = λL.

Hyperbolic system. A one-dimensional m × m first-order system of the form
(25) is hyperbolic if the Jacobian matrix A(Q) in (30) has m real eigenvalues
λ1, λ2, . . . , λm and a corresponding set of m linearly independent eigenvectors
R1,R2, . . . ,Rm. The system is said to be strictly hyperbolic if it is hyperbolic
and all eigenvalues are distinct.

Three-dimensional hyperbolic system. A three-dimensional m × m first-order
system of the form (1) is hyperbolic if the matrix

D(Q) = ω1A(Q) + ω2B(Q) + ω3C(Q) (32)

has m real eigenvalues λ1, λ2, . . . , λm and a corresponding set of m linearly
independent eigenvectors R1,R2, . . . ,Rm, for all linear combinations (32),
where the coefficients ω1, ω2 and ω3 define a non-zero vector, that is

√
ω2

1 + ω2
2 + ω2

3 > 0 .

A, B and C are the Jacobian matrices corresponding to the fluxes F, G and
H in (1).
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Example. Eigenstructure of the Isentropic Equations. A non-linear ex-
ample of a system of conservation laws are the isentropic equations of gas
dynamics (8) and (9), together with an isentropic EOS,

p = Cργ , C = constant, γ = constant. (33)

The reader is invited to calculate the Jacobian matrix, the eigenvalues and the
right eigenvectors and to show that for a generalized isentropic EOS, p = p(ρ),
the system is hyperbolic if and only if p′(ρ) > 0, that is, the pressure must be
a monotone increasing function of ρ. Show also that the sound speed has the
general form

a =
√

p′(ρ). (34)

The eigenvalues are
λ1 = u − a, λ2 = u + a, (35)

and the right eigenvectors are

R1 =
[

1
u − a

]
, R2 =

[
1

u + a

]
, (36)

with the sound speed a as claimed.

1.3 Linear Systems

In the previous section, we studied in detail the behaviour and the general
solution of the simplest PDE of hyperbolic type, namely the linear advection
equation with constant wave propagation speed. Here we extend the analysis
to sets of m hyperbolic PDEs of the form

∂tQ + A∂xQ = 0, (37)

where the coefficient matrix A is constant. From the assumption of hyperbol-
icity, A has m real eigenvalues λi and m linearly independent eigenvectors
Ri, i = 1, . . . , m.

Diagonalisation and Characteristic Variables

In order to analyse and solve the general IVP for (37), it is found useful to
transform the dependent variables Q(x, t) to a new set of dependent variables
W(x, t). To this end we recall the following definition.

Diagonalisable System. A matrix A is said to be diagonalisable if it can be
expressed as

A = RΛR−1 or Λ = R−1AR, (38)

in terms of a diagonal matrix Λ and a matrix R. The diagonal elements of Λ
are the eigenvalues λi of A and the columns Ri of R are the right eigenvectors
of A corresponding to the eigenvalues λi, that is
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Λ =

⎡
⎢⎢⎢⎣

λ1 · · · 0
0 · · · 0
...

...
...

0 · · · λm

⎤
⎥⎥⎥⎦ , R = [R1, . . . ,Rm], ARi = λiRi. (39)

A system (37) is said to be diagonalisable if the coefficient matrix A is di-
agonalisable. Based on the concept of diagonalisation, one often defines a
hyperbolic system (37) as a system with real eigenvalues and diagonalisable
coefficient matrix.

Characteristic Variables

The existence of the inverse matrix R−1 makes it possible to define a new set
of dependent variables W = [w1, w2, . . . , wm]T via the transformation

W = R−1Q or Q = RW, (40)

so that the linear system (37), when expressed in terms of W, becomes com-
pletely decoupled in a sense to be defined. The new variables W are called
characteristic variables. Next we derive the governing PDEs in terms of the
characteristic variables, for which we need the partial derivatives in equation
(37). As A is a constant, R is a also constant and, therefore, these derivatives
are

∂tQ = R∂tW, ∂xQ = R∂xW.

Direct substitution of these expressions into (37) gives

R∂tW + AR∂xW = 0.

Multiplication of this equation from the left by R−1 and use of (40) gives

∂tW + Λ∂xW = 0. (41)

This is called the canonical form or characteristic form of system (37). When
written in full this system becomes

⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎣

λ1 · · · 0
0 · · · 0
...

...
...

0 · · · λm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦

x

= 0. (42)

Clearly the ith PDE of this system is

∂wi

∂t
+ λi

∂wi

∂x
= 0, i = 1, . . . ,m (43)

and involves the single unknown wi(x, t); the system is, therefore, decoupled;
equation (43) is identical to the linear advection equation (4); now the char-
acteristic speed is λi and there are m characteristic curves satisfying m ODEs

dx

dt
= λi, for i = 1, . . . ,m.
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The General Initial-Value Problem

We now study the general IVP for a linear hyperbolic system

PDEs : ∂tQ + A∂xQ = 0, −∞ < x < ∞, t > 0,

IC : Q(x, 0) = Q(0)(x) =

⎧
⎨
⎩

QL if x < 0,

QR if x > 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(44)

where the vector Q(0) of initial conditions is

Q(0) = [q(0)
1 , . . . , q(0)

m ]T.

We find the general solution of the IVP (44) by first solving the correspond-
ing IVP for the canonical system (41) or (42) in terms of the characteristic
variables W and appropriate initial condition. We solve

PDEs : ∂tW + Λ∂xW = 0, −∞ < x < ∞, t > 0,

IC : W(x, 0) = W(0)(x) =

⎧
⎨
⎩

WL if x < 0,

WR if x > 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(45)

with
W(0) = [w(0)

1 , . . . , w(0)
m ]T = R−1Q(0) or Q(0) = RW(0).

The solution of IVP (45) is direct. By considering each unknown wi(x, t) in
(43) and its corresponding initial data w

(0)
i , we write its solution immedi-

ately as
wi(x, t) = w

(0)
i (x − λit), for i = 1, . . . ,m. (46)

Compare this with the solution (15) for the scalar case. The solution of the
general IVP in terms of the original variables Q is now obtained by trans-
forming back according to (40), namely Q = RW, to recover the solution to
the original problem. When written in full the solution becomes

q1 = w1r
(1)
1 + w2r

(2)
1 + · · · + wmr

(m)
1 ,

qi = w1r
(1)
i + w2r

(2)
i + · · · + wmr

(m)
i ,

qm = w1r
(1)
m + w2r

(2)
m + · · · + wmr(m)

m ,

or ⎡
⎢⎢⎢⎣

q1

q2

...
qm

⎤
⎥⎥⎥⎦ = w1

⎡
⎢⎢⎢⎢⎣

r
(1)
1

r
(1)
2
...

r
(1)
m

⎤
⎥⎥⎥⎥⎦

+ w2

⎡
⎢⎢⎢⎢⎣

r
(2)
1

r
(2)
2
...

r
(2)
m

⎤
⎥⎥⎥⎥⎦

+ · · · + wm

⎡
⎢⎢⎢⎢⎣

r
(m)
1

r
(m)
2
...

r
(m)
m

⎤
⎥⎥⎥⎥⎦

,
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or more succinctly

Q(x, t) =
m∑

i=1

wi(x, t)Ri. (47)

This means that the function wi(x, t) is the coefficient of Ri in an eigenvector
expansion of the vector Q. But according to (46), wi(x, t) = w

(0)
i (x−λit) and

hence

Q(x, t) =
m∑

i=1

w
(0)
i (x − λit)Ri. (48)

Thus, given a point (x, t) in the x–t plane, the solution Q(x, t) at this point
depends only on the initial data at the m points x

(i)
0 = x− λit. These are the

intersections of the characteristics of speed λi with the x-axis. The solution
(48) for Q can be seen as the superposition of m waves, each of which is
advected independently without change in shape. The ith wave has the shape
w

(0)
i (x)Ri and propagates with speed λi.

The Riemann Problem

We study the Riemann problem for the hyperbolic, constant coefficient system
(37), namely the IVP

PDEs: ∂tQ + A∂xQ = 0, −∞ < x < ∞, t > 0,

IC: Q(x, 0) = Q(0)(x) =

⎧
⎨
⎩

QL if x < 0,

QR if x > 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(49)

which is a special case of IVP (44) and a generalization of IVP (16). We
assume that the system is strictly hyperbolic and we order the real and distinct
eigenvalues as

λ1 < λ2 < · · · < λm. (50)

The structure of the solution of the Riemann problem (49) in the x–t plane
consists of m waves emanating from the origin, one for each eigenvalue λi.
Each wave i carries a jump discontinuity in Q propagating with speed λi.
Naturally, the solution to the left of the λ1-wave is simply the initial data QL

and to the right of the λm-wave the solution is QR. The task at hand is to
find the solution in the wedge between the λ1 and λm waves.

As the eigenvectors R1, . . . ,Rm are linearly independent, we can expand
the data QL, constant left state, and QR, constant right state, as linear com-
binations of the set R1, . . . ,Rm, that is

QL =
m∑

i=1

αiRi, QR =
m∑

i=1

βiRi, (51)
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with constant coefficients αi and βi, for i = 1, . . . ,m. Formally, the solution
of the IVP (49) is given by (48) in terms of the initial data w

(0)
i (x) for the

characteristic variables and the right eigenvectors Ri. Note that each of the
expansions in (51) is a special case of (48). In terms of the characteristic
variables, we have m scalar Riemann problems for the PDEs

PDE:
∂wi

∂t
+ λi

∂wi

∂x
= 0, −∞ < x < ∞, t > 0

IC: w
(0)
i (x) =

⎧
⎨
⎩

αi if x < 0,

βi if x > 0,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(52)

for i = 1, . . . , m. From the previous results, see (18), we know that the solu-
tions of these scalar Riemann problems are given by

wi(x, t) = w
(0)
i (x − λit) =

⎧
⎨
⎩

αi if x − λit < 0,

βi if x − λit > 0.
(53)

For a given point (x, t), there is an eigenvalue λI such that λI < x/t < λI+1,
that is, x−λit > 0 ∀i such that i ≤ I. We can thus write the final solution to
the Riemann problem (49) in terms of the original variables as

Q(x, t) =
m∑

i=I+1

αiRi +
I∑

i=1

βiRi, (54)

where the integer I = I(x, t) is the maximum value of the sub-index i for
which x − λit > 0.

1.4 Non-linear Equations

Consider the one-dimensional non-linear system

∂tQ + ∂xF(Q) = S(Q), (55)

where Q is the vector of conserved variables, F(Q) is the vector of fluxes and
S(Q) is the vector of source terms.

As mentioned earlier, conservation laws may be expressed in differential
or in integral form. Here we consider two variants of the integral form. Take
a control volume V = [xL, xR]× [t1, t2] on the x–t plane. One integral form of
the system is

d

dt

xR∫

xL

Q(x, t) dx = F(Q(xL, t)) − F(Q(xR, t)) +

xR∫

xL

S (Q(x, t)) dx. (56)
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Another version of the integral form of the conservation laws is obtained by
integrating (56) in time between t1 and t2, with t1 ≤ t2. Clearly,

t2∫

t1

⎡
⎣ d

dt

xR∫

xL

Q(x, t) dx

⎤
⎦ dt =

xR∫

xL

Q(x, t2) dx −
xR∫

xL

Q(x, t1) dx

and thus (56) becomes

xR∫

xL

Q(x, t2) dx =

xR∫

xL

Q(x, t1) dx

+

t2∫

t1

F(Q(xL, t)) dt −
t2∫

t1

F(Q(xR, t)) dt

+

t2∫

t1

xR∫

xL

S (Q(x, t)) dxdt.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)

Shocks Waves and the Rankine–Hugoniot Conditions

Given a system of hyperbolic conservation laws

∂tQ + ∂xF(Q) = 0 (58)

and a discontinuous solution of speed Si associated with the λi-characteristic
field, the Rankine–Hugoniot conditions state

ΔF = SiΔQ, (59)

with

ΔQ ≡ QR − QL, ΔF ≡ FR − FL, FL = F(QL), FR = F(QR),

where QL and QR are the respective states immediately to the left and right
of the discontinuity.

Example. Burgers’s equation. Assume a shock wave of speed s with states qL

and qR modelled by the inviscid Burgers equation (6). The Rankine–Hugoniot
condition give

fR − fL = s(qR − qL), (60)

1
2
q2
R − 1

2
q2
L = s(qR − qL), (61)
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from which the shock speed is given by

s =
1
2
(qL + qR). (62)

Note that, unlike the scalar case, it is generally not possible to solve for the
shock speed Si in the case of a system. For a linear system with constant
coefficients

∂tQ + A∂xQ = 0,

with eigenvalues λi, for i = 1, . . . ,m, the Rankine–Hugoniot conditions across
the wave of speed Si ≡ λi read

ΔF = AΔQ = λi(ΔQ)i. (63)

In this brief introduction to hyperbolic balance laws, we have omitted
the study of non-linear equations and issues such as shock formation, non-
uniqueness, entropy conditions and many other concepts. See the guidelines
for further reading.

1.5 Further Reading

An informal introduction to the theory of hyperbolic conservation laws is
found in Chap. 2 of [36]. Also, an introductory treatment of hyperbolic equa-
tions is found in Chap. 10 of [46]. Treatments of the theory of conservation
laws with numerical methods in mind are found in [21] and [13]. For the theo-
retically inclined reader, comprehensive treatments of the theory of hyperbolic
of conservation laws are found in [5, 27] and [20].

2 The Finite Difference Method

A succinct introduction to numerical methods for computing approximate
solutions to hyperbolic equations is presented. Most of the section is devoted to
finite difference methods and some of their basic properties. We also introduce
finite volume methods, as derived from the integral form of the equations on
control volumes, and point out some of their properties. A list of relevant
references for further study is also given at the end of the section.

We study some basic concepts on numerical methods for hyperbolic partial
differential equations (PDEs). We do so in terms of the initial-boundary value
problem for the model hyperbolic equation, namely

PDE: ∂tq + λ∂xq = 0, x ∈ (0, b), t > 0,

IC: q(x, 0) = q(0)(x), x ∈ (0, b),

BCs: q(0, t) = q0(t), q(b, t) = qb(t), t ≥ 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(64)
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where b is a positive real number; q(0)(x) is the initial condition (IC) of the
problem, a prescribed function of x; and q0(t) and qb(t) are prescribed func-
tions of time and define the boundary conditions (BCs) of the problem.

The finite difference method first replaces the continuous x–t domain of
problem (64) by a discrete domain, a finite set of points (xi, tn) called mesh
or grid. Then, at each point (xi, tn) the partial derivatives of the PDE are
substituted by finite difference approximations; in this manner the partial
differential equation is substituted by a difference equation, an expression
that relates approximate values of the solution at neighbouring points.

Generating a mesh, specially for complex domains in multiple space di-
mensions, can be a very demanding task. In its simplest form, as for problem
(64), the mesh can be generated as follows:

• the spatial domain [0, b] is partitioned by a set of M +2 equidistant points

xi = iΔx, i = 0, . . . ,M,Δx =
b

M + 1
, (65)

where M is a chosen positive integer and we end up with M interior points
and two boundary points.

• the temporal domain [0,∞) is partitioned by a set of equidistant points,
or time levels,

tn = nΔt, n = 0, . . . , (66)

We end up with the set of points (xi, tn) = (iΔx, nΔt), also denoted by (i, n).
The parameters Δx and Δt determine the mesh. Δx results from prescribing
the number of points in the partition of [0, b], while Δt is related to Δx in a
fixed manner, as we shall see later. Δx is the distance between points in the
x-direction and Δt is the time step, the difference between two time levels.

2.1 Finite Difference Approximation to Derivatives

The finite difference method computes an approximate value qn
i to the exact

value q(xi, tn) of the solution q(x, t) of (64) at a finite set of points (xi, tn) in
the x–t domain of problem (64). Thus we write

qn
i ≈ q(xi, tn). (67)

For example, at the point (xi, tn), the temporal partial derivative can be
replaced by any of the following expressions:

∂tq(xi, tn) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

qn+1
i − qn

i

Δt
+ O(Δt),

qn+1
i − qn−1

i

2Δt
+ O(Δt2).

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(68)

Analogously for the spatial partial derivative in (64) at the point (xi, tn), we
can use any of the following:
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∂xq(xi, tn) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qn
i −qn

i−1
Δx + O(Δx),

qn
i+1−qn

i

Δx + O(Δx),

qn
i+1−qn

i−1
2Δx + O(Δx2).

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(69)

Other choices for the finite difference approximations are of course possible.

2.2 Some Well-Known Numerical Methods

Particular numerical methods result from choosing particular combinations in
(68) and (69) above, not all of them being productive.

Godunov’s Method (1959). This method, interpreted in a finite difference
setting, results from choosing

∂tq(xi, tn) = qn+1
i −qn

i

Δt ,

∂xq(xi, tn) =

⎧
⎪⎨
⎪⎩

qn
i −qn

i−1
Δx if λ > 0,

qn
i+1−qn

i

Δx if λ < 0.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(70)

For positive characteristic speed, λ > 0, after substituting the finite difference
approximations (70) into the PDE in (64), we obtain

La(qn
i ) ≡

qn+1
i − qn

i−1

Δt
+ λ

(
qn
i − qn

i−1

Δx

)
= 0, (71)

where La(qn
i ) denotes a numerical operator associated with the Godunov

method and acts on point values. Solving for qn+1
i , we obtain the numeri-

cal scheme
qn+1
i = qn

i − c
(
qn
i − qn

i−1

)
, (72)

where
c =

λΔt

Δx
=

λ

Δx/Δt
(73)

is the Courant number, or the CFL number (for Courant–Friedrichs–Lewy).
Note that c is a dimensionless quantity, as is the ratio of the characteristic
speed λ in the PDE and the mesh speed Δx/Δt.

For negative characteristic speed, λ < 0, the Godunov scheme reads

qn+1
i = qn

i − c(qn
i+1 − qn

i ). (74)
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Remarks

• The method (72), or (74), is said to be explicit as the solution at the new
time level n + 1 at the point i depends explicitly on the solution at the
previous time level n.

• Formulas (72) and (74) are time-marching procedures. Solution values at
the future time level n + 1 can be predicted by using the known solution
at the time level n (the present time).

• At time level 0, one uses the initial condition q(0)(x) to provide the discrete
initial values q0

i = q(0)(xi).
• The mesh points that lie on the boundaries x = 0 and x = b must be

updated separately, using the boundary conditions of the problem. Beware
of boundary conditions.

• The scheme (72), and (74), is said to be a one-step scheme. It is also called
a two-level scheme.

• The Godunov method is said to be upwind, as the spatial differencing in
(70) is performed according to the sign of the characteristic speed λ. The
information is taken from the side from which the wind blows.

The FTCS (Forward in Time Central in Space) Method. This finite
difference method results from choosing

∂tq(xi, tn) = qn+1
i −qn

i

Δt ,

∂xq(xi, tn) = qn
i+1−qn

i−1
2Δx .

⎫
⎪⎬
⎪⎭

(75)

The approximate operator is

La(qn
i ) ≡ qn+1

i − qn
i

Δt
+ λ

(
qn
i+1 − qn

i−1

2Δx

)
= 0, (76)

which gives the explicit scheme

qn+1
i = qn

i − 1
2
c(qn

i+1 − qn
i−1). (77)

As we shall see later, the FTCS method is unconditionally unstable and is
thus useless.

The Lax–Friedrichs Method. This finite difference method results from
choosing finite difference approximations as in the FTCS method but re-
placing qn

i in the approximation to the time derivative by the mean value
1/2(qn

i−1 + qn
i+1). The numerical operator is

La(qn
i ) ≡

qn+1
i − 1

2 (qn
i−1 + qn

i+1)
Δt

+ λ

(
qn
i+1 − qn

i−1

2Δx

)
= 0, (78)

yielding the explicit scheme
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qn+1
i =

1
2
(qn

i−1 + qn
i+1) −

1
2
c(qn

i+1 − qn
i−1). (79)

The Lax–Wendroff Method. The construction of this method is some-
what different. One first expresses the solution at (xi, tn+1) as a Taylor series
expansion in time

q(xi, tn+1) = q(xi, tn) + Δt∂tq(xi, tn) +
1
2
Δt2∂

(2)
t q(xi, tn) + O(Δt3). (80)

By means of the Cauchy–Kowalewski procedure, one can use the PDE in (64)
to replace time derivatives by space derivatives, namely

∂tq(x, t) = −λ∂xq(x, t),

∂
(2)
t q(x, t) = λ2∂

(2)
x q(x, t),

∂
(k)
t q(x, t) = (−λ)k∂

(k)
x q(x, t).

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(81)

Then we have

q(xi, tn+1) = q(xi, tn)−Δtλ∂xq(xi, tn)+
1
2
Δt2λ2∂(2)

x q(xi, tn)+O(Δt3). (82)

Now by approximating the spatial derivatives by central finite differences

∂xq(xi, tn) =
qn
i+1 − qn

i−1

2Δx
, ∂(2)

x q(xi, tn) =
qn
i+1 − 2qn

i + qn
i−1

Δx2
(83)

and substituting exact values by their respective approximate values we obtain
the Lax–Wendroff scheme

qn+1
i =

1
2
c(1 + c)qn

i−1 + (1 − c2)qn
i − 1

2
c(1 − c)qn

i+1. (84)

2.3 Some Properties of Numerical Methods

It is intuitively obvious that one would expect the numerical approximation to
the PDE to converge to the exact solution of the PDE as the mesh is refined,
that is, as the mesh parameters Δx and Δt tend to zero. Mathematically,
however, it is not a simple matter to demonstrate directly that a particular
method is convergent. However, by means of the Lax Equivalent Theorem,
one can indirectly arrive at the result. The Lax Equivalent Theorem, valid
for linear problems, states that a method is convergent if and only if it is
consistent and stable. We therefore study here, these two latter concepts.

All schemes studied so far can be written as

qn+1
i = H(qn

i−l, q
n
i−l+1, . . . , q

n
i , . . . , qn

i+r), (85)
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where l and r are two non-negative integers that determine the support of the
scheme. For example, for the Godunov method, the operator H is in fact a
linear combination of solution values at the time level n, namely

H = cqn
i−1 + (1 − c)qn

i , for λ > 0 , l = −1, r = 0,

H = (1 + c)qn
i − cqn

i+1, for λ < 0 , l = 0, r = 1.

⎫
⎬
⎭ (86)

Linear Schemes. A numerical scheme, for the linear advection equation with
constant coefficient λ in (64), written as a linear combination of data values
at time level n

qn+1
i =

k=r∑
k=−l

bkqn
i+k (87)

is said to be linear if the coefficients bk are constant, that is, they do not
depend on the solution. All schemes considered so far are examples on linear
schemes.

Local Truncation Error

Amongst the several types of errors of interest, the local truncation error of
a numerical scheme is of basic importance. It measures, locally, the quality
of the approximation of the PDE by a difference equation in one time step.
One begins by expressing the scheme (85) as the approximate operator La(qn

i )
introduced in (71), namely

La(qn
i ) =

1
Δt

[qn+1
i − H(qn

i−l, q
n
i−l+1, . . . , q

n
i , . . . , qn

i+r)] = 0. (88)

In this form, the numerical operator La(qn
i ) is the discrete analogue of the

differential operator. Note that La(qn
i ) = 0, that is, qn

i satisfies identically
the difference equation. But how about La(q(xi, tn))? Is the exact solution
q(xi, tn) of the PDE at the point (xi, tn) also a solution of the discrete prob-
lem? The answer is no, in general. There will be an error and this is called
the local truncation error, defined as

Tn
i = La(q(xi, tn)). (89)

The fact that Tn
i is not zero is not due to the argument q(xi, tn) in (89), as

this is the exact solution of the PDE. It is due to the approximate operator,
and thus the local truncation error is a measure of the numerical scheme.

The general procedure to calculate the truncation error first assumes that
the solution q(x, t) of the PDE is sufficiently smooth so that one can use
Taylor series expansions, in space and time, about the central point of the
stencil (xi, tn). Then, algebraic manipulations lead to an expression of the
form
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Tn
i = ∂tq(iΔx, nΔt) + λ∂xq(iΔx, nΔt)

+ O(Δtk) + O(Δxm).

⎫
⎬
⎭ (90)

The first line of the right hand side of (90) is precisely the differential equa-
tion of which q(x, t) is the solution. Therefore this line is zero and the local
truncation error has the form

Tn
i = O(Δtk) + O(Δxm). (91)

Order of a Method. We say that the scheme (85) with local truncation error
(91) is of the order k in time and of the order m in space. The order of accu-
racy p of scheme (85) is defined as p = min{k,m}.

Example. Local Truncation Error of Godunov’s Method. Applying the
definition of local truncation error, we have

Tn
i =

1
Δt

[q(iΔx, (n + 1)Δt) − (cq((i − 1)Δx, nΔt) + (1 − c)q(iΔx, nΔt))] .

(92)

Assuming the solution q(x, t) to be smooth, we develop the following Taylor
expansions about the point (xi, tn).

q(iΔx, (n + 1)Δt) = q(iΔx, nΔt) + Δt∂tq(iΔx, nΔt)
+ 1

2Δt2∂
(2)
t q(iΔx, nΔt) + O(Δt3),

q((i − 1)Δx, nΔt) = q(iΔx, nΔt) − Δx∂xq(iΔx, nΔt)
+ 1

2Δx2∂
(2)
x q(iΔx, nΔt) + O(Δx3),

q((i + 1)Δx, nΔt) = q(iΔx, nΔt) + Δx∂xq(iΔx, nΔt)
+ 1

2Δx2∂
(2)
x q(iΔx, nΔt) + O(Δx3).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(93)

Substituting (93) into (92) and using the fact that cΔx/Δt = λ and
cΔx2/Δt = λΔx, we obtain

Tn
i = ∂tq(iΔx, nΔt) + λ∂xq(iΔx, nΔt)

+ 1
2Δt∂

(2)
t q(iΔx, nΔt) − 1

2λΔx∂
(2)
x q(iΔx, nΔt) + O(Δt2) + O(Δx2).

⎫
⎬
⎭

(94)

Note that the first line of the right-hand side of (94) is precisely the differential
equation, of which q(x, t) it is assumed to be the solution. Consequently, this
line is zero. Then neglecting the terms O(Δt2) and O(Δx2), we obtain the
local truncation error

Tn
i =

1
2
Δt∂

(2)
t q(iΔx, nΔt)− 1

2
λΔx∂(2)

x q(iΔx, nΔt) = O(Δt) +O(Δx). (95)
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As Tn
i = O(Δt) + O(Δx) the Godunov scheme is said to be first-order in

space and first-order in time.
Now we use the Cauchy–Kowalewski procedure in (95) to convert the time

derivative to a space derivative, see (81), and we obtain

Tn
i =

1
2
λΔx(c − 1)∂(2)

x q(iΔx, nΔt). (96)

Remark. The local truncation error for the Godunov method vanishes for
Δx = 0, as one would expect, for λ = 0 and also for c = 1, Courant number
unity. Note also that the error depends on a second-order spatial derivative.

Consistent Scheme. A numerical scheme is said to be consistent with the PDE
(or compatible with the PDE) if the truncation error vanishes as the mesh
parameters Δx and Δt tend to zero.

Modified Equation

In general, a numerical method does not solve the PDE that one intends to
solve, but due to truncation errors inherent in the scheme, one solves more
accurately other PDEs. Such PDEs may be seen as variations of the original
PDE in which the local truncation error plays a major role.

As a first example, consider the local truncation error of the Godunov
upwind method, for λ > 0,

Tn
i = ∂tq(iΔx, nΔt) + λ∂xq(iΔx, nΔt)

+ 1
2 [Δt∂

(2)
t q(iΔx, nΔt) − λΔx∂

(2)
x q(iΔx, nΔt)] + O(Δt2) + O(Δx2).

⎫
⎬
⎭

(97)

In calculating the local truncation error, we have assumed that q(x, t) is a
solution of the original PDE and we have thus neglected the first line on the
right hand side of (97). Had we assumed that q(x, t) was a solution of the
modified PDE at the point (iΔx, nΔt)

∂tq + λ∂xq +
1
2
[Δt∂

(2)
t q − λΔx∂(2)

x q] = 0 (98)

then the local truncation error would have been of the order O(Δt2),O(Δx2).
In this case, the scheme solves the modified equation (98) more accurately
than the original PDE, to second order, in fact.

The modified equation for the Godunov upwind scheme can be written as

∂tq + λ∂xq =
1
2

[
λΔx∂(2)

x q − Δt∂
(2)
t q
]
. (99)
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Assuming a fixed relation between the mesh parameters Δx and Δt, we use
O(Δtm) also for O(Δxm). Now applying the Cauchy–Kowalewski procedure
to the modified equation (99) to convert the second-order time derivative to
a space derivative, we have

∂tq = −λ∂xq = 1
2 [λΔx∂

(2)
x q − Δt∂

(2)
t q] = −λ∂xq + O(Δt),

∂x∂tq = −λ∂2
xq + O(Δt),

∂2
t q = −λ(∂x∂tq + O(Δt) = −λ[−λ∂2

xq + O(Δt)] + O(Δt),

∂2
t q = λ2∂2

xq + O(Δt).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(100)

The modified equation becomes

∂tq + λ∂xq = α∂
(2)
x q,

α = 1
2λΔx(1 − c).

⎫
⎬
⎭ (101)

This is an advection–diffusion equation, a parabolic equation. Numerical so-
lutions of the inviscid equation behave as the solution of a viscous equation,
having the effect of numerical viscosity, not of physical viscosity. For this
reason, the coefficient α is called the coefficient of numerical viscosity. In gen-
eral, first-order methods have modified equations that are of the advection–
diffusion type, with numerical viscosity.

Second-order methods, on the other hand, have modified equations of the
dispersion type, namely

∂tq + λ∂xq = γ∂(3)
x q, (102)

with coefficient of numerical dispersion γ. For example, the Lax–Wendroff
method, a second-order method, has modified equation

∂tq + λ∂xq = α∂
(3)
x q,

γ = 1
6λΔx2(c2 − 1).

⎫
⎬
⎭ (103)

Numerical dispersive errors show up in the form of wrong wave propagation
speeds, called phase errors.

Linear Stability Analysis

Here we deal with stability analysis of numerical schemes. There are several
views on the meaning of stability, or instability, but a central issue is that
of spurious oscillations and their unbounded growth in time. An informative
discussion is found in the book by Laney [19]. A distinction must be made
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between linear and non-linear stability. Here we are concerned exclusively with
linear stability, for which again there are several methods to analyse it. We
study the von Neumann method and apply it, as an example, to the Godunov
scheme (72). We introduce the Fourier component, or trial solution,

qn
i = AneIθi, (104)

where A is the amplitude (raised to the power n), a real or complex number,
θ = PΔx is an angle, P is the wave number in the x-direction and we define
I =

√
−1, to avoid confusion with the spatial index i. Substitution of the trial

solution into the numerical scheme

qn+1
i = qn

i − c
(
qn
i − qn

i−1

)
(105)

gives
An+1eIθi = AneIθi − c

(
AneIθi − AneIθ(i−1)

)
. (106)

Cancelling the common factor AneIθi yields

A = 1 + c(cos θ − 1) − cI sin θ. (107)

The squared of the modulus of this complex number is

||A||2 = (1 + c(cos θ − 1))2 + c2 sin2 θ. (108)

Manipulations give

||A||2 = 1 − 2c(1 − c)(1 − cos θ), (109)

from which it follows that

||A||2 ≤ 1 if 0 ≤ c ≤ 1. (110)

The Godunov scheme is stable if condition (110) is satisfied. We say that the
Godunov scheme is conditionally stable with stability condition (110).

Monotonicity and Accuracy

Monotone scheme. A numerical scheme

qn+1
i = H(qn

i−l, q
n
i−l+1, . . . , q

n
i , . . . , qn

i+r) (111)

is said to be monotone if

∂

∂qn
k

H(qn
i−l, q

n
i−l+1, . . . , q

n
i , . . . , qn

i+r) ≥ 0, i − l ≤ k ≤ i + r. (112)
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Note that for a linear scheme

qn+1
i =

k=r∑
k=−l

bkqn
i+k, (113)

where the coefficients bk are constant, monotonicity requires that all coeffi-
cients be non-negative, that is

bk ≥ 0, i − l ≤ k ≤ i + r. (114)

Thus, by inspection one can decide whether a numerical scheme is a monotone
or not. For example, the Godunov upwind method for λ > 0 is

qn+1
i = H(qn

i−l, q
n
i ) = cqn

i−l + (1 − c)qn
i . (115)

Clearly the scheme is monotone, as both coefficients are non-negative if the
linear stability condition (110) is obeyed, that is, c ≥ 0 and 1 − c ≥ 0, if
0 ≤ c ≤ 1.

Exercise. Discuss the monotonicity of the following schemes: Godunov’s
scheme for λ < 0, the FTCS scheme, the Lax–Friedrichs scheme and the
Lax–Wendroff scheme.

We now state a useful result that facilitates the verification of the accuracy
of any linear scheme

qn+1
i =

k=r∑
k=−l

bkqn
i+k. (116)

Accuracy Theorem: A scheme of the form (116) is pth (p ≥ 0) order accurate
in space and time if and only if

r∑
k=−l

kηbk = (−c)η, 0 ≤ η ≤ p. (117)

Remark. For each integer value of η, with 0 ≤ η ≤ p, we verify that the sum
of terms kηbk, for all integers k with −l ≤ k ≤ r, reproduces identically the
power (−c)η, where c is the Courant number.

The above result is used to prove the Godunov’s theorem below.

Godunov’s Theorem

Godunov’s theorem establishes, theoretically, that the desirable properties
of accuracy and monotonicity are, for linear schemes, contradictory require-
ments. The following result applies to the linear advection equation with con-
stant coefficient and linear schemes (116).
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Theorem. (Godunov, 1959): There are no monotone, linear schemes (116)
for the linear advection equation with constant coefficient λ of second or higher
order of accuracy.

Proof. The proof given here is based on the accuracy relation (117). Denote
by sη the summation

sη =
r∑

k=−l

kηbk, (118)

where bk are the coefficients (constant) of the (linear) scheme (116). For
second-order accuracy, one requires

s0 = 1, s1 = −c, s2 = c2. (119)

From definition (118)

s2 =
r∑

k=−l

k2bk

=
r∑

k=−l

(k + c)2bk − 2c

r∑
k=−l

kbk − c2
r∑

k=−l

bk

=

[
r∑

k=−l

(k + c)2bk

]
− 2cs1 − c2s0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(120)

Use of (119) into (120) gives
[

r∑
k=−l

(k + c)2bk

]
+ c2 ≥ c2. (121)

The above inequality holds, as a linear monotone scheme satisfies bk ≥ 0.
Equality in (121), and thus second-order accuracy, is only possible if bk = 0 ∀k
or when c = −k0, that is for integer Courant numbers, and bk = 0 ∀k �= k0.
Thus the theorem has been proved for schemes satisfying the condition 0 ≤
|c| ≤ 1; we note that the case of integer Courant numbers larger than unity
is only of theoretical interest, as for non-linear systems this is an impossible
requirement to impose on numerical methods.

Remarks on Godunov’s Theorem. Another way to express Godunov’s
theorem is that monotone schemes are at most first-order accurate. First-order
methods are too inaccurate to be of practical interest. One must therefore
search for other classes of schemes that, ideally, allow for both the oscillation-
free property of monotone schemes and the accuracy of high-order methods
to coexist. This is down to finding ways of circumventing Godunov’s theorem.
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The key to this lies on the assumption made in the theorem that the schemes
have fixed coefficients (linear schemes). Thus a necessary condition (not suf-
ficient) for a numerical schemes to be oscillation-free and of high-order of
accuracy (for smooth solutions) is that the scheme be non-linear, even when
applied to linear problems. For a fuller discussion, see Chap. 13 of [36].

2.4 The Finite Volume Method

The finite volume method offers another approach to solving hyperbolic partial
differential equations. Unlike the finite difference method, in which one seeks
approximate values of the solution at points, the finite volume method seeks
approximations to integral averages of the solution on control volumes.

The Framework

We consider the initial-boundary value problem for non-linear hyperbolic sys-
tems in one space dimension with source terms

PDE: ∂tQ + ∂xF(Q) = S(Q), x ∈ (0, b), t > 0,

IC: Q(x, 0) = Q(0)(x), x ∈ (0, b),

BCs: Q(0, t) = Q0(t),Q(b, t) = Qb(t), t ≥ 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(122)

The finite volume method replaces the continuous spatial domain in (122)
by a discrete domain consisting of a finite number of volumes or cells. Then,
in each such cell one looks for approximations to the integral average of the
solution. The simplest finite volume discretization of the complete x–t domain
proceeds as follows:

• the spatial domain [0, b] is partitioned by a set of M cells or volumes

Ii ≡ [xi− 1
2
, xi+ 1

2
] , i = 1, . . . , M. (123)

• the open temporal domain [0,∞) is partitioned by a set of time levels

t0 = 0, tn+1 = tn + Δtn, n = 0, . . . (124)

In this setting we have the following:

xi− 1
2
, xi+ 1

2
are the cell interfaces,

Δx = xi+ 1
2
− xi− 1

2
is the mesh width or cell width,

xi = 1
2 (xi− 1

2
+ xi+ 1

2
) is the cell centre,

Δtn = tn+1 − tn is the time step or step length.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(125)
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Note that in practice the time step Δtn varies from time level to time level,
but for convenience we often drop the sub-index.

Consider now a space–time control volume

V ≡ [xi− 1
2
, xi+ 1

2
] × [tn, tn+1]. (126)

Integration of the PDEs in (122) in V with respect to x and t yields the exact
formula

Qn+1
i = Qn

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] + ΔtSi, (127)

with the following definitions

• Qn
i is the spatial-integral average at time t = tn

Qn
i =

1
Δx

x
i+ 1

2∫

x
i− 1

2

Q(x, tn)dx, (128)

• Fi+ 1
2

is the time-integral average at the interface x = xi+ 1
2

Fi+ 1
2

=
1

Δt

Δt∫

0

F(Q(xi+ 1
2
, t))dt, (129)

• Si is the volume-integral average in V

Si =
1

Δt

1
Δx

Δt∫

0

x
i+ 1

2∫

x
i− 1

2

S(Qi(x, t))dxdt. (130)

Remark: local coordinates. We often use local coordinates such that tn corre-
sponds to t = 0 and tn+1 corresponds to t = Δtn = Δt. Analogously for the
spatial coordinate, we take the interface position x = xi+ 1

2
to coincide with

x = 0.
In (128) the integrand is assumed to be the known initial condition at time

tn within the control volume. In (129) Q(xi+ 1
2
, t) is the solution of the PDEs

in(122) at the interface position x = xi+ 1
2
. In (130) the function Qi(x, t) is

the solution of the PDEs in (122) within the space–time volume V . Under
these assumptions relation (127) is exact; it is not a difference approximation.

The finite volume numerical method results from interpreting (127) as a
numerical formula to update approximations to cell averages Qn

i . One requires
approximations to the time-integral average of the flux Fi+ 1

2
and approxima-

tions to the volume integral average of the source Si.
We call such approximations the numerical flux and the numerical source,

respectively, and are still denoted by Fi+ 1
2

and Si. There are many ways
of prescribing numerical fluxes and numerical sources, and thus of obtaining
finite volume methods, a large class of numerical methods.
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Conservative Schemes

A conservative numerical method to solve the homogeneous version of (122)
is defined as a scheme of the form

Qn+1
i = Qn

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
], (131)

in which the numerical flux is given as

Fi+ 1
2

= Fi+ 1
2
(Qn

i−l, . . . ,Q
n
i ,Qn

i+1, . . . ,Q
n
i+r), (132)

where l and r are two non-negative integers. As defined, the scheme is explicit.
In an implicit conservative scheme, the flux function includes arguments at
time level n + 1. Finite volume schemes are, by definition, conservative meth-
ods. Some conventional finite difference methods can also be reinterpreted as
conservative methods. For example, the Lax–Friedrichs method can be written
as (131) with numerical flux

FLF
i+ 1

2
(Δx,Δt,Qn

i ,Qn
i+1) =

1
2
(
F(Qn

i ) + F(Qn
i+1)
)
− 1

2
Δx

Δt

(
Qn

i+1 − Qn
i

)
.

(133)
The two-step version of the Lax–Wendroff method reads

FLW
i+ 1

2
(Δx,Δt,Qn

i ,Qn
i+1) = F(QLW

i+ 1
2
),

QLW
i+ 1

2
= 1

2

(
Qn

i + Qn
i+1

)
− 1

2
Δt
Δx

(
F(Qn

i+1) − F(Qn
i )
)
.

⎫
⎪⎬
⎪⎭

(134)

The FORCE flux is

FFO
i+ 1

2
(Δx,Δt,Qn

i ,Qn
i+1) = 1

4

(
F(Qn

i ) + 2F(QLW
i+ 1

2
) + F(Qn

i+1)
)

− 1
4

Δx
Δt

(
Qn

i+1 − Qn
i

)
.

⎫
⎪⎬
⎪⎭

(135)

The Lax–Friedrichs and FORCE schemes are first-order accurate and also
monotone (for the scalar case). Note that not all first order methods are
monotone. The Lax–Wendroff schemes are second-order accurate in space and
time but not monotone. All three schemes are called centred, or symmetric,
and are distinct from upwind schemes. Schemes of the former class do not use
wave propagation information and are very simple to use. Upwind methods,
such as the Godunov method, utilise wave propagation information; they are
not only more accurate than centred schemes but also more sophisticated.

The finite volume version of the Godunov upwind method is of the form
(131), with numerical flux obtained from the solution of the local Riemann
problem

PDE: ∂tQ + ∂xF(Q) = 0,

IC: Q(x, 0) =

⎧
⎪⎨
⎪⎩

Qn
i if x < 0,

Qn
i+1 if x > 0,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(136)
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for which the similarity solution is denoted as Qi+ 1
2
(x, t). The Godunov nu-

merical flux is defined as

FGod
i+ 1

2
= F
(
Qi+ 1

2
(0)
)

. (137)

Other definitions of the Godunov numerical flux are also possible. In par-
ticular, one can define the Godunov flux in terms of approximate solutions to
the Riemann problem, leading to approximate states or directly to approxi-
mate fluxes, see [36] for details.

Remarks on Conservative Methods: The important property of mono-
tonicity, valid only for the scalar case, can also be established for conservative
methods in terms of the numerical flux. Conservative methods enjoy a num-
ber of good properties when it comes to computing solutions to hyperbolic
conservations laws. For example, in the presence of shock waves, the use of
conservative methods is mandatory. This is supported by numerical and theo-
retical evidences from the Lax–Wendroff theorem (1960) and the Hou-LeFloch
theorem (1994). In particular, it is known that a non-conservative method will
compute shock waves with the wrong speed.

2.5 Further Reading

An introduction to numerical methods for hyperbolic conservation laws is
found in Chap. 5 of [36]. The books [13, 21] and [19] are particularly recom-
mended. For Riemann solvers to be used in Godunov type methods, see [36].
The library NUMERICA [37] is a collection of source programs for solving hy-
perbolic equations in one, two and three space dimensions and is suitable for
learning and teaching numerical methods. The full library can be downloaded
from the website www.ing.unitn.it/toro

3 Two Riemann Solvers: HLLC and EVILIN

Here we discuss two practical approaches for solving the Riemann problem
approximately and computing intercell numerical fluxes for Godunov-type
methods. The first is called the HLLC solver and was first put forward by
Toro et al. [32], see also [33, 34]. HLLC is a modification of the HLL solver
proposed by Harten, Lax and van Leer [14]. HLL is based on a two-wave
model while HLLC (which stands for Harten, Lax, van Leer and Contact)
is based on a three-wave model, resulting in a non-linear complete Riemann
solver for the three-dimensional Euler equations, for example. Since HLLC
first appeared, several improvements and extensions have been put forward;
also, many applications of the method have been published. Useful information
is obtained by going to Google and typing HLLC solver. The second Riemann
solver, we present here, is the EVILIN solver [43]. This is a predictor–corrector
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approach in which the predictor step evolves in time the initial conditions of
the local Riemann problem, then in the corrector step one solves a linearized
Riemann problem whose initial conditions are the evolved states. Numerical
results for a test problem that illustrates what is distinctive about the two
solvers are shown. Relevant references for further reading are indicated at the
end of the section.

3.1 The Euler Equations for General Materials

The Euler equations in three space dimensions are

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = 0, (138)

with

Q =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎣

ρv
ρvu

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρwu
ρwv

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

(139)
Here ρ is density; u, v and w are velocity components in the x, y and z
directions, respectively; p is pressure and E is total energy given by

E = ρ[
1
2
(u2 + v2 + w2) + e], (140)

with e denoting the specific internal energy.
To have a determined system, one requires a closure condition. For general

compressible materials, one uses a caloric equation of state relating the vari-
ables ρ, p and e. Often one uses other variables, such as the specific volume
1/ρ and the entropy s. Here we consider two possible functional relations for
a general equilibrium equation of state in terms of the variables ρ, p and e.
These are given below, along with the corresponding expressions for the sound
speed a in the considered material

p = p(ρ, e) → a =
√

p

ρ2
pe + pρ, e = e(ρ, p) → a =

√
p

ρ2ep
− eρ

ep
, (141)

where subscripts denote partial derivatives. We assume the standard convexity
condition for the equation of state. For the simple case of ideal gases, one has
the familiar equation of state and corresponding sound speed

e =
p

(γ − 1)ρ
→ a =

√
γp

ρ
,

where γ is the ratio of specific heats. For air under most conditions one takes
γ = 1.4.
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3.2 The HLLC Solver

To set the scene, one only needs to consider the conservative scheme

Qn+1
i = Qn

i − Δt

Δx

(
Fi+ 1

2
− Fi− 1

2

)
. (142)

The Godunov upwind finite volume method determines the intercell numerical
flux Fi+ 1

2
by solving the Riemann problem for the relevant system of equations

with initial conditions Qn
i and Qn

i+1.
A Remark on Notation. We shall often use QL to denote Qn

i and QR to
denote Qn

i+1.
Consider now the Riemann problem for the three dimensional Euler equa-

tions in the direction normal to a finite volume interface. Without loss of
generality, we take the x-direction, for which the vectors of conserved vari-
ables and fluxes are

Q =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (143)

The Riemann problem is the initial-value problem

∂tQ + ∂xF(Q) = 0,

Q(x, 0) =

⎧
⎨
⎩

QL if x < 0,

QR if x > 0.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(144)

Figure 1 shows the structure of the exact solution of the Riemann problem
in terms of the primitive variables ρ, u, v, w, and p for the three-dimensional
Euler equations. The eigenvalues are λ1 = u − a, λ2 = λ3 = λ4 = u, and
λ5 = u+a, where u is the normal component of velocity and a is the speed of
sound. There are five corresponding wave families, of which two are associated
with the acoustic fields u−a and u+a; the middle, coincident, eigenvalues are
associated with an entropy wave, a shear wave in the y-direction and a shear
wave in the z-direction. The exact solution contains four constant regions: the
left and right regions being determined by the initial conditions and two new
regions called the star left and the star right regions, separated by the contact
wave. The intermediate wave determines an entropy wave with a jump in
density, a shear wave in the y-direction with a jump in v and a shear wave in
the z-direction with a jump in w. Pressure and normal velocity are constant
throughout the star region, left and right. An approximate Riemann solver
must account correctly for these properties of the exact solution.

The fact that three eigenvalues are coincident means that by fitting just
one extra wave to the original two-wave HLL solver we are actually able
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p R

w R

ρ R

ρ *R

u R

u *

(u,u,u)

(u – a) (u + a)

x

v R

p L

w L

ρ L

u L

v L

w R

v R

ρ *L

p 

*

w L

v L

0

t

Fig. 1. Structure of the exact solution of the Riemann problem for the three di-
mensional Euler equations in the x-direction. There are five wave families associated
with the eigenvalues u − a, u (of multiplicity 3) and u + a

to account for all five waves in the three-dimensional Euler equations. The
HLLC solver assumes a three-wave model for the structure of the solution
of the Riemann problem (144) and assumes that wave speed estimates SL,
S∗, SR for the left, middle and right wave are available. Referring to Fig. 1,
the unknown states are Q∗L between the left and middle waves and Q∗R
between the middle and right waves. Numerically, we are interested in the
corresponding fluxes F∗L and F∗R. The HLLC approximate solution for the
states, still unknown, satisfies

Q(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

QL if x
t ≤ SL,

Q∗L if SL ≤ x
t ≤ S∗,

Q∗R if S∗ ≤ x
t ≤ SR,

QR if x
t ≥ SR.

(145)

Integrating the equations over appropriate control volumes yields the following
relations

F∗L = FL + SL(Q∗L − QL),

F∗R = F∗L + S∗(Q∗R − Q∗L),

F∗R = FR + SR(Q∗R − QR).

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(146)

These are three equations for the four unknown vectors Q∗L, F∗L, Q∗R and
F∗R. The aim is first to find the vectors Q∗L and Q∗R and then the fluxes
F∗L and F∗R. In order to find a solution, we impose the following conditions
on the approximate HLLC solver
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u∗L = u∗R = u∗,

p∗L = p∗R = p∗,

v∗L = vL, v∗R = vR,

w∗L = wL, w∗R = wR.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(147)

See Fig. 1. These conditions are in fact satisfied by the exact solution for the
Riemann problem (in the normal direction) for the three-dimensional Euler
equations.

In addition, by setting
S∗ = u∗ (148)

and using (146), (147) and (148) one can explicitly solve for the vectors Q∗L
and Q∗R, namely

Q∗K = ρK

(
SK − uK

SK − S∗

)
⎡
⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ + pK

ρK(SK−uK)

]

⎤
⎥⎥⎥⎥⎥⎦

, (149)

for K = L and R.
Therefore the fluxes F∗L and F∗R in (146) are completely determined and

the HLLC flux reads

Fhllc
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL,

F∗L = FL + SL(Q∗L − QL) if SL ≤ 0 ≤ S∗,

F∗R = FR + SR(Q∗R − QR) if S∗ ≤ 0 ≤ SR,

FR if 0 ≥ SR.

(150)

We note that for any passive scalar q advected with the fluid speed u, the
system of equations will include an equation in conservative form

(ρq)t + (ρqu)x = 0. (151)

Such passive scalars may represent concentrations of species in multi-com-
ponent flow, for example. Note that the tangential velocity components v and
w in (143) are special cases of passive scalars.

The new HLLC state due to the passive scalar is given by

(ρq)∗K = ρK

(
SK − uK

SK − S∗

)
qK , (152)

for K = L and R.
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Wave Speed Estimates

One requires three wave speed estimates: SL, S∗ and SR. Here we consider a
method based on pressure–velocity estimates for the star region [36]. Let us
suppose that we have estimates p∗ and u∗ for the pressure and particle velocity
in the star region. Then we choose the following wave speed estimates

SL = uL − aLqL, S∗ = u∗, SR = uR + aRqR, (153)

where

qK =

⎧
⎪⎨
⎪⎩

1 if p∗ ≤ pK ,

[
1 + γ+1

2γ (p∗/pK − 1)
] 1

2
if p∗ > pK .

(154)

This choice of wave speeds discriminates between shock and rarefaction waves.
If the K wave (K = L or R) is a rarefaction then the speed SK corresponds
to the characteristic speed of the head of the rarefaction, which carries the
fastest signal. If the wave is a shock wave then the speed corresponds to an
approximation to the true shock speed; the wave relations used are exact (for
ideal gases) but the pressure ratio across the shock is approximated, because
the solution for p∗ is an approximation. We propose various schemes to find
p∗ and u∗.

ALICE: Approximate Linearized Solver Based on the Characteristic Equa-
tions. This very simple linearized approximate Riemann solver based on the
characteristic form of the equations was put forward in [35]. Approximations
for p∗ and u∗ are

pce = 1
CL+CR

[CRpL + CLpR + CLCR(uL − uR)],

uce = 1
CL+CR

[CLuL + CRuR + (pL − pR)],

⎫
⎬
⎭ (155)

with CL = ρLaL and CR = ρRaR.

Two-Rarefaction Riemann Solver. Approximate values for pressure and ve-
locity are given by

ptr =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

] 1
z

,

utr =
PLRuL/aL + uR/aR + 2(PLR−1)

(γ−1)

PLR/aL + 1/aR
,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(156)

where

PLR =
(

pL

pR

)z

; z =
γ − 1
2γ

. (157)
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The Two-Shock Riemann Solver. This is a very robust approximate solver but
it does require an estimate p∗0 for the pressure. This may be obtained from
any of the approximate expressions for pressure in (155) or (156). It is then
recommended to set p0 = max(0, p∗0). The two-shock solutions for pressure
and velocity are

pts =
gL(p0)pL + gR(p0)pR − (uR − uL)

gL(p0) + gR(p0)
,

uts =
1
2
(uL + uR) +

1
2

[(pts − pR)gR(p0) − (pts − pL)gL(p0)],

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(158)

where

gK(p0) =
[

AK

p0 + BK

] 1
2

, (159)

for K = L and R.
An alternative method assumes only an approximation for the pressure p∗,

from which one first computes SL and SR, as in (153). Then S∗, an estimate
for the middle wave speed, is computed as

S∗ =
pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (160)

Summary of HLLC: To find the HLLC numerical flux in (150), one performs
the following steps:

• Find pressure–velocity estimates p∗ and u∗ using any of (155) or (156) or
(158);

• Calculate wave speed estimates SL, S∗ and SR as in (153) and (154); note
option (160) for S∗;

• Calculate the states Q∗L or Q∗R in (149), as appropriate; and
• Compute the numerical flux as in (150).

3.3 The EVILIN Riemann Solver

The Riemann problem (144) is solved approximately to obtain the similarity
solution QLR(x/t) to be used in the computation of the intercell numerical
flux as Fi+ 1

2
= F(QLR(0)). We study the EVILIN solver [44], a variant of the

recently proposed MUSTA approach [41, 43], a multi-stage predictor–corrector
scheme in which simple methods are used at each stage. The EVILIN scheme
has two stages: a predictor and a corrector, as seen below.



38 E.F. Toro

Predictor Step: Data Evolution

The initial conditions in (144) are time evolved as follows:

Q̂L = QL − δt

δx
[FP

LR − F(QL)], Q̂R = QR − δt

δx
[F(QR) − FP

LR]. (161)

Here FP
LR = FP

LR(QL,QR) is a two-point predictor numerical flux. The com-
putational parameters δx and δt are independent of the mesh parameters Δx
and Δt of the scheme (142) and will be specified below.

One possible choice for the predictor is the FORCE flux [38]

FFO
i+ 1

2
= 1

4

[
F(Qn

i ) + 2F(QLW
i+ 1

2
) + F(Qn

i+1) − Δx
Δt

(
Qn

i+1 − Qn
i

)]
,

QLW
i+ 1

2
= 1

2 [Qn
i + Qn

i+1] − 1
2

Δt
Δx [F(Qn

i+1) − F(Qn
i )].

⎫
⎪⎬
⎪⎭

(162)

Another choice is the GFORCE flux [43]

FGF
i+ 1

2
= ΩFLW

i+ 1
2

+ (1 − Ω)FLF
i+ 1

2
, (163)

where FLW
i+ 1

2
= F(QLW

i+ 1
2
) is the two-step Lax–Wendroff flux, FLF

i+ 1
2

is the Lax–
Friedrichs flux and

Ω(C) =
1

1 + C
. (164)

C is a prescribed, independent CFL coefficient with 0 < C ≤ 1. We remark
that for the linear advection equation FGF

i+ 1
2

reduces to the Godunov flux if
the C is the CFL coefficient of the scheme (142).

Regarding the choice of the parameters δt and δx in the predictor step
(161), first note that we can set δx arbitrarily; two obvious choices are δx = 1
and δx = Δx. Then the time step δt is computed exclusively from local wave
speed information contained in the two data states Qn

i , Qn
i+1 and the chosen

CFL coefficient C, with 0 < C ≤ 1. There is the temptation to call δx, δx
and C, local mesh parameters, but that terminology would be misleading.

Note also that when applying FGF
i+ 1

2
in the predictor step (161), the flux

depends on the data states Qn
i and Qn

i+1 as well as on the parameters δt and
δx. Then the GFORCE flux reads

FGF
i+ 1

2
= ΩFLW

i+ 1
2
(Qn

i ,Qn
i+1, δx, δt) + (1 − Ω)FLF

i+ 1
2
(Qn

i ,Qn
i+1, δx, δt). (165)

Corrector Step: Linearized Riemann Solver

In the corrector step, we solve the Riemann problem (144) but with evolved
initial conditions (Q̂L, Q̂R) obtained from the predictor step (161). Now we
first reformulate the problem in terms of the vector of primitive variables
W = [ρ, u, v, w, p]T so that the Riemann problem becomes
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∂tW + B∂xW = 0,

Ŵ(x, 0) =

⎧
⎨
⎩

ŴL if x < 0,

ŴR if x > 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(166)

with ŴL = ŴL(Q̂L) and ŴR = ŴR(Q̂R). Then we perform a local lineari-
sation of the system in (166), based on the arithmetic mean

W̃ =
1
2
(ŴL + ŴR). (167)

A Remark on Notation. Here a quantity η̂ means an evolved quantity in the
predictor step and the quantity ψ̃ means an arithmetic average of correspond-
ing evolved quantities η̂.

The coefficient matrix of the linearized system is

B̂ = B
(
W̃
)

. (168)

The eigenvalues and eigenvectors of B̂ are denoted by

λ̂i = λi

(
W̃
)

, R̂i = R̂i

(
W̃
)

, for i = 1, 2, . . . ,m. (169)

The similarity solution ŴLR(x/t) of (166) is obtained from standard theory
of hyperbolic systems with constant coefficients. The jump Δ̂ ≡ ŴR − ŴL

in the initial conditions is given as

Δ̂ = [Δρ̂,Δû,Δv̂,Δŵ,Δp̂]T = [ρ̂R − ρ̂L, ûR − ûL, v̂R− v̂L, ŵR − ŵL, p̂R − p̂L]T,
(170)

which is then projected onto the eigenvectors as

α1R̂1 + α2R̂2 + . . . + αmR̂m = Δ̂. (171)

This is a linear algebraic system for the wave strengths αi, i = 1, 2, . . . ,m,
which are the unknowns. For some problems of practical interest, the closed-
form solution of the linear system can be easily obtained by hand. For more
complicated systems, we recommend the use of algebraic manipulators. One
may also find the solution numerically using any standard software for linear
algebraic systems.

Having found the wave strengths αi, one knows the solution everywhere
in the half plane t > 0, −∞ < x < ∞. We are interested in the solution at
the particular point x/t = 0 to determine the sought numerical fluxes Fi+ 1

2
.

We have the following three options
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ŴLR(0) = ŴL +
∑

λ̂i<0

αiR̂i, (172)

or
ŴLR(0) = ŴR −

∑

λ̂i>0

αiR̂i, (173)

or

ŴLR(0) =
1
2
(ŴL + ŴR) − 1

2

m∑
i=1

αiR̂i. (174)

The sought numerical flux for the finite volume scheme (142) is

Fi+ 1
2

= F(ŴLR(0)). (175)

Summary of EVILIN: To compute the EVILIN numerical flux, one per-
forms the following steps:

• At each volume interface with data (QL,QR), apply the predictor step
(161) to evolve (QL,QR) to (Q̂L, Q̂R);

• Reformulate the Riemann problem with evolved initial conditions (Q̂L, Q̂R)
in terms of a suitable set of variables, such as the primitive variables, for
example;

• Linearize the Riemann problem with evolved initial conditions to find the
state ŴLR(0) at the interface;

• Compute the numerical flux as in (175).

Corrector Step for the Euler Equations

For the three-dimensional Euler equations, the linear algebraic system (171)
has solution

α1 =
Δp̂ − Δûρ̃ã

2ρ̃ã2
,

α2 =
Δρ̂ã2 − Δp̂

ã2
,

α3 = Δv̂,

α4 = Δŵ,

α5 =
Δp̂ + Δûρ̃ã

2ρ̃ã2
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(176)

The explicit solution in the unknown star region, see Fig. 1, is given by
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p∗ = 1
2 (p̂L + p̂R) − 1

2 (ûR − ûL)C1,

u∗ = 1
2 (ûL + ûR) − 1

2 (p̂R − p̂L)/C1,

ρ∗L = ρ̂L + (ûL − u∗)C2,

ρ∗R = ρ̂R + (u∗ − ûR)C2,

v∗
L = v̂L,

v∗
R = v̂R,

w∗
L = ŵL,

w∗
R = ŵR,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(177)

where
C1 = ρ̃ã, C2 = ρ̃/ã . (178)

For the ideal gas case ã =
√

γp̃
ρ̃ . For details on more general equations of

state, see [44].

3.4 Sample Numerical Results and Discussion

Here we show numerical results for a simple but representative test problem,
that of an isolated, stationary contact discontinuity for the one-dimensional
ideal Euler equations, with γ = 1.4. The problem is solved in a domain [0, 1]
with uniform velocity u = 0 and uniform pressure p = 1 throughout the
domain and with two values for density, namely ρL = 1.4 for x < 1

2 and
ρR = 1.0 for x > 1

2 . The exact solution is precisely the initial condition, namely
a stationary isolated contact discontinuity. Numerical results are shown in
Fig. 2 for HLLC and in Fig. 3 for EVILIN, in which comparison is made
against the exact solution (full line) and the numerical solution obtained from
the HLL Riemann solver. HLLC and EVILIN reproduce the exact solution
while HLL smears the discontinuity to unacceptable levels; moreover, this
numerical diffusion process in the HLL solver will continue without limit in
time.

Even if this kind of trivial test problems is precisely the dividing line (the
contact discontinuity) between complete and incomplete Riemann solvers. The
numerical difficulties highlighted by this test are identical to those encoun-
tered in resolving other types of waves associated with intermediate linearly
degenerate characteristic fields, such as shear waves, vortices, material inter-
faces and reaction fronts. The numerical results of HLL show that it is not
sufficient to use an upwind method or just some Riemann solver. Of course
centred methods, those that do not use wave propagation information, will be
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Fig. 2. HLLC solution (circles) compared to the exact solution (line) and the HLL
solution (squares) at time 2.0

even more inaccurate than HLL. Capturing shock waves, on the other hand,
is not a particularly demanding task nowadays. Incomplete and even good
centred methods can give surprisingly satisfactory results. The real challenge
is posed by intermediate waves, especially those associated with linearly de-
generate fields.

Methods of high order of accuracy may also be brought into the discussion.
For smooth solutions, for which high accuracy makes sense, it does not matter
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Fig. 3. EVILIN solution (circles) compared to the exact solution (line) and the
HLL solution (squares) at time 2.0
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which numerical flux is used: a centred scheme such as FORCE, the Rusanov
flux (one-wave model), HLL (two-wave model), or any other; all of them should
lead to the expected convergence rates. The problem appears for discontinuous
solutions, where the resolution of the discontinuities depends very strongly on
the numerical flux used. It is often argued that a high-order method can
compensate for the incomplete character of the Riemann solver. This is true
but only to some extent. Given a linear, slowly moving contact wave, for
example, an incomplete Riemann solver will artificially diffuse the wave. Once
the linear wave has been diffused, there is no mechanism that will restore
back the missing information; moreover, the artificial diffusion mechanism
will continue to diffuse the wave in time, without limit. A known exception is
a TVD method with the compressive SUPERBEE limiter.

3.5 Further Reading

Background reading on the HLL and HLLC Riemann solvers is found in
Chap. 10 of [36]. See the original reference for [14] for HLL and [32, 33]
and [34] for HLLC. Further references on HLL are [10], [11] and further ref-
erences on HLLC are [2], [3]. See [37] for programs for the Euler and shallow
water equations in which HLLC is used. Details on EVILIN are found in [44].
Some of the available references on the HLLC solver and related works are
also listed here: [1, 16, 22, 23, 24, 25].

4 Non-linear Methods for Scalar Equations

Godunov’s theorem states that the only way to have a numerical method of
accuracy greater than one and that also avoids the generation of spurious os-
cillations in the vicinity of large gradients is by constructing non-linear meth-
ods, even if applied to linear problems. In this section, we study two classes of
non-linear methods: TVD (Total Variation Diminishing) methods and ENO
(Essentially Non-Oscillatory) methods. The theory applies to scalar, homo-
geneous one-dimensional equations. For systems, the scalar theory does not
strictly apply but still serves as a useful guide to construct effective numerical
methods.

4.1 Monotone Schemes Revisited

Consider a scalar homogeneous conservation law

∂tq + ∂xf(q) = 0, (179)

where f(q) is the flux function. Conservative numerical methods to solve (179)
have the form

qn+1
i = qn

i − Δt

Δx

(
fi+ 1

2
− fi− 1

2

)
, (180)
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where fi+ 1
2

is the numerical flux. Methods to solve (179) can also be written
in the more general form

qn+1
i = H(qn

i−l, q
n
i−l+1, . . . , q

n
i , . . . , qn

i+r), (181)

where l and r are two non-negative integers that determine the support of
the scheme. The so-called incremental form is yet another way of expressing
a numerical method for (179); these have the form

qn+1
i = qn

i − Ci− 1
2
Δqi− 1

2
+ Di+ 1

2
Δqi+ 1

2
, (182)

where Δqi+ 1
2

= qn
i+1 − qn

i and the coefficients Ci+ 1
2
, Di+ 1

2
are in general

assumed to be functions of the data; the schemes are thus non-linear. see [14].
Next we recall monotone methods. A method for (179) written in the form

(181) is monotone if

∂

∂qn
k

H(qn
i−l, q

n
i−l+1, . . . , q

n
i , . . . , qn

i+r) ≥ 0, i − l ≤ k ≤ i + r. (183)

It is also possible to identify monotonicity conditions for a scheme written in
conservative form (180). In fact the monotonicity conditions can be applied
directly to the numerical flux, as seen in the following theorem.

Theorem. Monotonicity and the flux. A three-point scheme of the form (180)
for non-linear conservation laws (179) is monotone if

∂

∂qn
i

fi+ 1
2
(qn

i , qn
i+1) ≥ 0 and

∂

∂qn
i+1

fi+ 1
2
(qn

i , qn
i+1) ≤ 0. (184)

Consequently, a monotone two-point numerical flux fi+ 1
2
(qn

i , qn
i+1) is an in-

creasing (non-decreasing) function of its first argument and a decreasing (non-
increasing) function of its second argument.

Proof. In the scheme (180) we define

H(qn
i−1, q

n
i , qn

i+1) ≡ qn
i − Δt

Δx

(
fi+ 1

2
(qn

i , qn
i+1) − fi− 1

2
(qn

i−1, q
n
i )
)

.

The required result follows from the following observations

∂H

∂qn
i−1

≥ 0 implies
∂fi− 1

2

∂qn
i−1

(qn
i−1, q

n
i ) ≥ 0,

∂H

∂qn
i+1

≥ 0 implies
∂fi+ 1

2

∂qn
i+1

(qn
i , qn

i+1) ≤ 0.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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Example. the Lax–Friedrichs scheme. For a general non-linear conservation
law (179), the Lax–Friedrichs flux is

fLF
i+ 1

2
(qn

i , qn
i+1) =

1
2
(
f(qn

i ) + f(qn
i+1)
)
− 1

2
Δx

Δt

(
qn
i+1 − qn

i

)
.

Application of conditions (184) to the Lax–Friedrichs flux shows that mono-
tonicity is ensured provided

0 ≤ Δt|λmax|
Δx

≤ 1, (185)

where λ(q) = ∂f/∂q is the characteristic speed and |λmax| is the maximum
in absolute value. That is, provided the CFL stability condition is enforced
properly, the Lax–Friedrichs method is monotone when applied to non-linear
scalar conservation laws (179).

4.2 TVD Methods

It is possible to construct numerical methods that are better than monotone
methods. This can be accomplished by using concepts such as total variation
and total variation diminution, as seen below.

Total Variation. Given a mesh function qn = {qn
i } with qn

i constant as i tends
to −∞ or ∞, the total variation of qn is defined as

TV(qn) =
∞∑
−∞

|qn
i+1 − qn

i |. (186)

TVD Method. A method is said to be TVD if

TV(qn+1) ≤ TV(qn). (187)

Theorem. (Harten): The set of monotone methods is a subset of the set of
TVD methods.

Remarks on Motone and TVD Methods

• Monotone methods and TVD methods are only defined for scalar equations
(179), not for systems.

• The TVD property is a property satisfied by the exact solution of the
scalar, linear or non-linear, equation (179); this is not proved here.

• TVD numerical methods attempt to mimic the TVD property of the an-
alytical solution at the discrete level.
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• The construction of TVD methods for systems is done on empirical basis;
therefore the terminology TVD method for a system is not strictly correct.

Theorem. (Harten, 1983): For any scheme of the form (182) to solve (179),
a sufficient condition for the scheme to be TVD is that the coefficients satisfy

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, 0 ≤ Ci+ 1

2
+ Di+ 1

2
≤ 1. (188)

Proof. See [14], or Chap. 13 of [36].

Remarks on Harten’s Theorem

• The coefficients Ci+ 1
2

and Di+ 1
2

in Harten’s theorem may in general be
data dependent.

• The theorem therefore applies to non-linear schemes. This fact can be then
used to circumvent Godunov’s theorem, which applies to linear schemes
only.

• Harten’s theorem offers a very useful tool for constructing non-linear
schemes of accuracy greater than one.

• Schemes that allow a controlled increase in the total variation have also
been constructed. They are usually referred to as Total Variation Bounded
(TVB) schemes.

4.3 Flux Limiter Methods

Next we study TVD schemes as for the model linear advection equation

∂tq + λ∂xq = 0, (189)

with constant coefficient λ.
The class of TVD methods, called flux-limiter methods, have the form

fTVD
i+ 1

2
= fLO

i+ 1
2

+ ψi+ 1
2
(fHO

i+ 1
2
− fLO

i+ 1
2
), (190)

where fLO
i+ 1

2
is a low-order monotone flux and fHO

i+ 1
2

is a second-order non-

monotone flux. Obvious choices are the Godunov’s flux for fLO
i+ 1

2
and the

Lax–Wendroff flux for fHO
i+ 1

2
. The function ψi+ 1

2
is called flux limiter and

is constructed on TVD considerations, as seen below. Note that the special
value ψi+ 1

2
= 0 gives the monotone flux and ψi+ 1

2
= 1 gives the second order

flux.
The Sweby TVD Region. It is possible to derive a region in the r–ψ space,

called the TVD region, within which one can select functions, flux limiters,
that give a TVD method. In order to define this TVD region [31], we first
define the parameter r as follows
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r =
Δupw

Δloc
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qn
i − qn

i−1

qn
i+1 − qn

i

=
Δi− 1

2

Δi+ 1
2

if λ > 0,

qn
i+2 − qn

i+1

qn
i+1 − qn

i

=
Δi+ 3

2

Δi+ 1
2

if λ < 0.

(191)

The TVD region is the shaded portion of Fig. 4, to the right of ψ = 2r, above
ψ = 0 and below ψ = 2; also, ψ = 0 for r ≤ 0 is part of the TVD region.
Any function ψ(r) within this region, called a flux limiter, produces a TVD
scheme, but not every choice produces a good TVD scheme.

Popular choices for flux limiters are the SUPERBEE limiter

ψsb(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r ≤ 0,

2r if 0 ≤ r ≤ 1
2 ,

1 if 1
2 ≤ r ≤ 1,

r if 1 ≤ r ≤ 2,

2 if r ≥ 2,

(192)

2

ψ (r)
ψ R = 

ψ  = 2r ψ  = r

1

0

r = 0

r

2r

⎪c⎪

Fig. 4. Sweby’s TVD region is the shaded portion to the right of ψ = 2r, above
ψ = 0, below ψ = 2 and ψ = 0 for r ≤ 0
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the VANLEER limiter

ψvl(r) =

⎧
⎪⎨
⎪⎩

0 if r ≤ 0,

2r

1 + r
if r ≥ 0,

(193)

the VANALBADA limiter

ψva(r) =

⎧
⎨
⎩

0 if r ≤ 0,

r(1+r)
1+r2 if r ≥ 0,

(194)

and the MINBEE (or MINMOD) limiter

ψmb(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if r ≤ 0,

r if 0 ≤ r ≤ 1,

1 if r ≥ 1.

(195)

Remark. Numerical results do depend on the choice of the limiter. They are
distinguished by the amount of numerical diffusion added. The least diffu-
sive (also said the most compressive) is SUPERBEE. The most diffusive is
MINBEE.

4.4 Reconstruction Methods

A large class of modern finite volume methods of accuracy greater than one
use a so-called reconstruction procedure.

Properties of Reconstructions

At any given time level n, one has a set of cell averages {qn
i }, which are

approximations to integral averages within each cell or finite volume, that is

qn
i ≈ 1

Δx

x
i+ 1

2∫

x
i− 1

2

q(x, tn)dx (196)

within the cell [xi− 1
2
, xi+ 1

2
], at time t = tn. These cell averages define a piece-

wise constant distribution of the solution in the computational domain. To
recover the information lost in the averaging, one looks for a set of functions
pi(x) that are defined in a domain that includes [xi− 1

2
, xi+ 1

2
]. Such functions

are constructed on the basis of the available cell averages {qn
i }. Usually pi(x)

is a polynomial.
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Two basic requirements on the reconstruction polynomials are as follows:

1. The conservation property. One expects the integral averages of the re-
constructed functions to coincide with the original averages, that is

qn
i =

1
Δx

x
i+ 1

2∫

x
i− 1

2

pi(x)dx, (197)

2. The non-oscillatory property. There are two different ways of satisfying
this requirement: imposing a TVD condition as studied above or imposing
an Essentially Non-Oscillatory (ENO) property, as we shall explain.

Example. First-Degree Polynomials. The simplest reconstruction is obtained
from first-degree polynomials

pi(x) = qn
i + (x − xi)Δi, (198)

where xi = 1
2 (xi− 1

2
+xi+ 1

2
) is the cell centre and Δi is the slope of the straight

line.

Note that the conservation property (197) is satisfied by (192) (verify). To
ensure the non-oscillatory property, one selects the slope Δi appropriately, for
which two criteria are considered, the TVD approach and the ENO approach.

The MUSCL-Hancock Scheme

Here, as an example, we present a specific numerical scheme that uses recon-
struction, namely the MUSCL-Hancock scheme. To compute the numerical
flux fi+ 1

2
for this method, one performs (see Fig. 5) three steps:

Step (I): Cell boundary values. These are obtained by evaluating the
appropriate polynomial at the cell boundaries, namely

qL
i = pi(xi− 1

2
) = qn

i − 1
2
ΔxΔi qR

i = pi(xi+ 1
2
) = qn

i +
1
2
ΔxΔi. (199)

Step (II): Evolution of cell boundary values.

qL
i = qL

i − 1
2

Δt

Δx
[f(qR

i ) − f(qL
i )] = qn

i − 1
2
(1 + c)ΔxΔi,

qR
i = qR

i − 1
2

Δt

Δx
[f(qR

i ) − f(qL
i )] = qn

i +
1
2
(1 − c)ΔxΔi.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(200)

Step (III): The Riemann Problem. To compute the intercell flux fi+ 1
2
,

one now solves the classical Riemann problem
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PDE: ∂tq + ∂x(λq) = 0,

IC: q(x, 0) =

⎧
⎪⎨
⎪⎩

qR
i = qn

i + 1
2 (1 − c)ΔxΔi if x/t < λ,

qL
i+1 = qn

i+1 − 1
2 (1 + c)ΔxΔi+1 if x/t > λ,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
(201)

to obtain the similarity solution qi+ 1
2
(x/t). The intercell flux fi+ 1

2
is now

computed in exactly the same way as in the Godunov first-order upwind
method, namely

fi+ 1
2

= f(qi+ 1
2
(0)) =

⎧
⎨
⎩

λqR
i = λ

(
qn
i + 1

2 (1 − c)ΔxΔi

)
if λ > 0,

λqL
i+1 = λ

(
qn
i+1 − 1

2 (1 + c)ΔxΔi+1

)
if λ < 0.

(202)

The resulting flux is capable of reproducing three well-known second-order
schemes: Warming–Beam, Lax–Wendroff and Fromm, depending on the way
the slope Δi is defined. We have

pi (x)

(a)

(b)

(c)

q (x,0)

0

0

L–qi + 1

xi + 1/2

x

x

t

R
qi

R
Qi

L–qi + 1

L–
Qi + 1

Qi + 1/2 (0)

–

R
qi
–

–

Fig. 5. MUSCL-Hancock schemes. Evolved cell-boundary values (a) form the data
for a classical Riemann problem (b), whose solution (c) is used to compute the flux
at the interface
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Δi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δi− 1
2

=
qn
i − qn

i−1

Δx
(Warming–Beam) λ > 0,

Δi+ 1
2

=
qn
i+1 − qn

i

Δx
(Lax–Wendroff) λ > 0,

Δc =
qn
i+1 − qn

i−1

2Δx
(Fromm).

(203)

Alternatively, instead of solving a Riemann problem and computing the
Godunov flux in step (III), one can also use a simple, monotone numerical
flux. For example, one can use the force flux. The resulting second-order
method has been termed SLIC, see [36]. Application of the force scheme
gives the flux

f force
i+ 1

2
= f force

i+ 1
2

(qR
i , qL

i+1). (204)

But in order to have a non-oscillatory scheme, we must select the slopes in a
special manner, as seen below.

TVD Slopes and Slope Limiters

Using TVD criteria one can construct limited slopes Δi of the form.

Δi = Δi(Δi− 1
2
,Δi+ 1

2
). (205)

One possible choice is

Δi =

⎧
⎨
⎩

max[0,min(βΔi− 1
2
,Δi+ 1

2
),min(Δi− 1

2
, βΔi+ 1

2
)], Δi+ 1

2
> 0,

min[0,max(βΔi− 1
2
,Δi+ 1

2
),max(Δi− 1

2
, βΔi+ 1

2
)], Δi+ 1

2
< 0,

(206)

for particular values of the parameter β.

The value β = 1 reproduces the MINBEE flux limiter (195), which may also
be written as

ψmi(r) = max[0,min(1, r)]. (207)

The value β = 2 reproduces the SUPERBEE flux limiter (192), which may
also be written as

ψsb(r) = max[0,min(2r, 1),min(r, 2)]. (208)

The parameter r is defined in (191).

Alternative Slope Limiters

An alternative approach for obtaining limited slopes is to first define a slope
as a linear combination of the slopes Δi− 1

2
and Δi+ 1

2
, namely
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Δ(c)
i =

1
2
(1 + ω)Δi− 1

2
+

1
2
(1 − ω)Δi+ 1

2
, ω ∈ [−1, 1]. (209)

Then we find a slope limiter ξi such that

Δi = ξiΔ
(c)
i . (210)

This approach leads to a TVD region for ξ(r) given as follows:

ξ(r) = 0 for r ≤ 0, 0 ≤ ξ(r) ≤ min{ξL(r), ξR(r)} for r > 0. (211)

For a simplified version of this region we take

ξL(r) =
2r

1 − ω + (1 + ω)r
,

ξR(r) =
2

1 − ω + (1 + ω)r
,

r =
Δi− 1

2

Δi+ 1
2

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(212)

Figure 6 shows the TVD region for the slope limiter functions. Within
this TVD region, one can construct slope limiters that give a TVD method.
A slope limiter that is analogous to the superbee flux limiter is

2

ξL ξR

ξ(r)

r

1

1 20

Fig. 6. TVD region for slope limiters
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ξsb(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r ≤ 0,

2r if 0 ≤ r ≤ 1
2 ,

1 if 1
2 ≤ r ≤ 1,

min (r, ξR(r), 2) if r ≥ 1.

(213)

A van Leer-type slope limiter is

ξvl(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if r ≤ 0,

min
(

2r

1 + r
, ξR(r)

)
if r ≥ 0.

(214)

A van Albada-type slope limiter is

ξva(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if r ≤ 0,

min
(

r(1 + r)
1 + r2

, ξR(r)
)

if r ≥ 0.
(215)

A minbee-type slope limiter is

ξmb(r) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if r ≤ 0,

r if 0 ≤ r ≤ 1,

min (1, ξR(r)) if r ≥ 1.

(216)

For details see Chap. 13 of [36].

ENO Slopes

The simplest ENO reconstruction is obtained from first-degree polynomials

pi(x) = qn
i + (x − xi)Δi, (217)

where xi = 1
2 (xi− 1

2
+ xi+ 1

2
) is the cell centre and Δi is the slope, still to be

determined. In the ENO approach, one chooses the slope Δi by analysing two
potential candidate stencils SL and SR and their corresponding polynomials
pL(x) and pR(x), namely

Left stencil: SL = {i − 1, i} → pL(x) = aL + bLx,

Right stencil: SR = {i, i + 1} → pR(x) = aR + bRx,

⎫
⎬
⎭ (218)

where the coefficients aL, bL, aR and bR are to be found.
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The candidate polynomial for each stencil must satisfy the conservation
property. For the left stencil we have

1
Δx

x
i− 1

2∫

x
i− 3

2

pL(x)dx = qn
i−1,

1
Δx

x
i+ 1

2∫

x
i− 1

2

pL(x)dx = qn
i , (219)

yielding

Δi ≡ Δi− 1
2

=
qn
i − qn

i−1

Δx
. (220)

Similarly, imposing conservation on pR(x)

1
Δx

x
i+ 1

2∫

x
i− 1

2

pR(x)dx = qn
i ,

1
Δx

x
i+ 3

2∫

x
i+ 1

2

pR(x)dx = qn
i+1 (221)

gives

Δi ≡ Δi+ 1
2

=
qn
i+1 − qn

i

Δx
. (222)

Out of the two possible choices, ENO selects the one with the smallest
absolute value, namely

Δi =

⎧
⎨
⎩

Δi− 1
2

if |Δi− 1
2
| ≤ |Δi+ 1

2
|,

Δi+ 1
2

if |Δi− 1
2
| > |Δi+ 1

2
|.

(223)

Thus the resulting ENO polynomial is

pENO
i (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pL(x) = qn
i + (x − xi)

(
qn
i − qn

i−1

Δx

)
if |Δi− 1

2
| ≤ |Δi+ 1

2
|,

pR(x) = qn
i + (x − xi)

(
qn
i+1 − qn

i

Δx

)
if |Δi− 1

2
| > |Δi+ 1

2
|.
(224)

Remarks on Non-linear Schemes

• A modification of the ENO approach, called WENO (for weighted ENO),
uses all candidate stencils in the ENO approach to produce a polynomial
that is a linear combination of all candidate ENO polynomials. See the
work of Jiang and Shu [17].

• The reconstruction approach, ENO or WENO, can be extended to any
order of accuracy in one space dimension. WENO has also been ex-
tended to multiple space dimensions and on unstructured meshes. For
latest developments, see the work of Dumbser et al. [8].
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4.5 Further Reading

Most of the material of this section follows Chap. 13 of [36], which is partic-
ularly recommended for further reading. The original paper of Harten [14] is
a classic on the subject as is the article by Sweby [28]. The textbooks [21]
and [19] also contain relevant information on non-linear schemes. In [37] the
reader will find a collection of source codes for TVD methods. The paper of
Jiang and Shu [17] is a useful source of information on ENO and specially
WENO methods. The paper by Dumbser et al. [8] contains some recent de-
velopments on non-linear methods of very high order of accuracy for three
dimensional problems solved on unstructured meshes.

5 Non-linear Schemes for Hyperbolic Systems

Here we construct non-linear finite volume schemes for non-linear systems
of hyperbolic balance laws, with source terms, in one space dimension. The
theory is strictly applicable to the scalar homogeneous case only. For systems,
the theoretical basis of the scalar case serve only as a useful guide to develop
quasi-non-oscillatory numerical methods, which in practice turn out to be
quite effective. Here we apply the TVD and the ENO criteria to construct
second-order finite volume schemes for non-linear systems of conservation laws
with source terms.

5.1 Recalling the Finite Volume Method

We consider non-linear systems in one space dimension with source terms

∂tQ + ∂xF(Q) = S(Q) (225)

and finite volume methods to solve (225), which have the form

Qn+1
i = Qn

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] + ΔtSi. (226)

Finite volume schemes (226) may be interpreted as resulting from integrating
the equations in space and time on the control volume [xi− 1

2
, xi+ 1

2
]× [tn, tn+1]

in x–t space. In this manner, (226) is an exact relation in which

• Qn
i is the spatial-integral average at time t = tn

Qn
i =

1
Δx

x
i+ 1

2∫

x
i− 1

2

Q(x, tn)dx, (227)
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• Fi+ 1
2

is the time-integral average at the interface x = xi+ 1
2

Fi+ 1
2

=
1

Δt

Δt∫

0

F(Q(xi+ 1
2
, t))dt, (228)

• Si is the volume-integral average in V

Si =
1

Δt

1
Δx

∫ Δt

0

x
i+ 1

2∫

x
i− 1

2

S(Qi(x, t))dxdt. (229)

Finite volume numerical methods result from interpreting (226) as an ap-
proximate numerical formula to update cell averages Qn

i , for which one re-
quires a numerical flux, still denoted by Fi+ 1

2
, and a numerical source, still

denoted by Si. In this numerical context, Ii = [xi− 1
2
, xi+ 1

2
] is the computing

cell or just cell; xi− 1
2

and xi+ 1
2

are the cell interfaces; Δx = xi+ 1
2
− xi− 1

2
is

the mesh width or cell width; xi = 1
2 (xi− 1

2
+ xi+ 1

2
) is the cell centre; and

Δtn = tn+1 − tn is the time step or step length. Note that in practice the
time step Δtn varies from time level to time level, but for convenience we
often drop the sub-index. To have a method, it is enough to prescribe the
numerical flux Fi+ 1

2
and the numerical source Si. We study two numerical

methods of second order of accuracy, namely MUSCL-Hancock and ADER2,
both of them based on polynomial reconstruction.

5.2 Polynomial Reconstruction for Systems

The methods we study here require a reconstruction step to find a reconstruc-
tion polynomial vector Pi(x) for each cell Ii. For systems such as (225), we
can perform the reconstruction in two different ways.

Component by Component Reconstructions

For second-order methods with reconstruction in each cell Ii = [xi− 1
2
, xi+ 1

2
],

we construct (or reconstruct) a first-degree polynomial pi(x) for each compo-
nent q = qk of the vector of conserved variables, namely

pi(x) = qn
i + (x − xi)Δi,k, (230)

where Δi,k is a slope. Then we apply the reconstruction procedure studied for
the scalar case to each component of the vector Q. To choose the slopes Δi,k,
for each component q = qk, one can use either TVD or ENO criteria. Figure 7
shows a single component pi(x) of the reconstructed vector Pi(x).
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Reconstructed first-degree polynomial

i–1 i+1

X

pi (x)

Rqi

nqi

Lqi

i

Fig. 7. Illustration of the reconstruction procedure for a single component pi(x) of
the reconstructed vector Pi(x)

Reconstructions in Terms of Characteristic Variables

An alternative to the component-by-component approach is to perform the
reconstruction procedure in terms of characteristic variables. In this manner,
the theory developed for the scalar case is closer to the system case, in some
sense. For second-order methods, the advantages of characteristic-variable re-
construction over component-by-component reconstruction are less obvious
than for higher order schemes, for which in fact characteristic-variable recon-
struction is mandatory.

For each cell Ii = [xi− 1
2
, xi+ 1

2
], we construct a polynomial Ci(x) of char-

acteristic variables by first transforming from conserved variables to charac-
teristic variables in the usual way. This transformation is based on the frozen
matrix Jacobian matrix An

i = A(Qn
i ) and is carried out not just in cell Ii but

in a set of neighbouring cells around Ii with the same matrix An
i , namely

Wl = R−1
i (Qn

l ), l ∈ Ti. (231)

Ti is the set of integers that define the potential stencils for the polynomial
Ci(x), for example, Ti = {i− 1, i, i + 1}. Ri is the matrix whose columns are
the right eigenvectors of An

i , namely

Ri =
[
R1 R2 . . . Rn

]
, (232)

with Rk the right eigenvector of An
i corresponding to the eigenvalue λk, for

k = 1, . . . , m. R−1
i is the inverse matrix of Ri.

The vectors Wl of characteristic variables are denoted as
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Wl =

⎡
⎢⎢⎢⎣

w1,l

w2,l

...
wm,l

⎤
⎥⎥⎥⎦ , l ∈ Ti. (233)

For each characteristic variable wk,i, we build up a reconstructed polynomial,
as done for the scalar case.

For second-order schemes, for each component wk,i, we write the first-
degree polynomial

ci(x) = wk,i + (x − xi)Δk,i. (234)

In choosing the slopes Δk,i, one can apply the TVD criteria studied for the
scalar case, in the usual way, for each component of the vector of characteristic
variables. The complete reconstruction polynomial Ci(x) for cell Ii for the
characteristic variables is

Ci(x) =

⎡
⎢⎢⎢⎣

c1(x)
c2(x)

...
cm(x)

⎤
⎥⎥⎥⎦ . (235)

When applying the ENO criterion, in terms of characteristic variables, one
choose the slopes as follows

Δk,i =

⎧
⎪⎪⎨
⎪⎪⎩

wk,i − wk,i−1

Δx
if |wk,i − wk,i−1| ≤ |wk,i+1 − wk,i|,

wk,i+1 − wk,i

Δx
if |wk,i − wk,i−1| > |wk,i+1 − wk,i|.

(236)

The method just described gives the complete polynomial Pi(x) in cell i for
the conserved variables, namely

Pi(x) = RiCi(x). (237)

In particular, one may compute cell boundary values, sometimes called bound-
ary extrapolated values,

QL
i = Pi(xi− 1

2
) = RiCL

i , QR
i = Pi(xi+ 1

2
) = RiCR

i . (238)

Next we study a scheme that makes use of reconstructions based on first-
degree polynomials.

5.3 The MUSCL-Hancock Scheme

In the MUSCL-Hancock approach for a non-linear, homogeneous version of
(225), the numerical flux Fi+ 1

2
is computed as follows:
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Step (I): Data reconstruction and boundary extrapolated values.
From the reconstruction polynomial vector Pi(x) in each cell Ii, we obtain
the boundary extrapolated values by evaluating Pi(x) at the boundaries
x = xi− 1

2
and x = xi+ 1

2
, namely

QL
i = Pi(xi− 1

2
) QR

i = Pi(xi+ 1
2
). (239)

Step (II): Evolution. For each cell Ii, the boundary extrapolated values
QL

i and QR
i in (239) are evolved by a time 1

2Δt

Q
L

i = QL
i − 1

2
Δt

Δx
[F(QR

i ) − F(QL
i )],

Q
R

i = QR
i − 1

2
Δt

Δx
[F(QR

i ) − F(QL
i )].

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(240)

Note that this evolution step is entirely contained in each cell Ii, as the
intercell fluxes are evaluated at the boundary extrapolated values of each
cell. At each intercell position xi+ 1

2
, there are two fluxes, namely F(QR

i )
and F(QL

i+1), which are in general distinct. This does not really affect
the conservative character of the overall method, as this step is only an
intermediate step; the intercell flux Fi+ 1

2
to be used in (226) is yet to be

evaluated.
Step (III): The Riemann problem. To compute the intercell flux Fi+ 1

2
,

one now solves the classical Riemann problem with data

QL ≡ Q
R

i QR ≡ Q
L

i+1 (241)

to obtain the similarity solution Qi+ 1
2
(x/t). The intercell flux Fi+ 1

2
is now

computed in exactly the same way as in the Godunov first-order upwind
method, namely

Fi+ 1
2

= F(Qi+ 1
2
(0)). (242)

Here Qi+ 1
2
(0) denotes the value of Qi+ 1

2
(x/t) at x/t = 0, i.e. the value of

Qi+ 1
2
(x/t) along the t-axis. Figure 8 illustrates the steps for the MUSCL-

Hancock scheme.
At this stage, one can choose any method by solving the Riemann prob-
lem approximately or exactly. Many approximate Riemann solvers give
directly approximations for the flux.

Remark. centred flux. Alternatively, instead of solving a Riemann problem
in step (III), one can also use a simple but monotone (checked to be mono-
tone for the scalar case) numerical flux. For example, one can use the force

flux. The resulting second-order method has been termed the SLIC scheme.
Application of the force scheme gives the flux



60 E.F. Toro

pi (x)

(a)

(b)

(c)

q (x,0)

0

0

Lqi + 1

xi + 1/2

x

x

t

R
qi

R
qi

R
Qi

Lqi + 1

L
Qi + 1

Qi + 1/2 (0)

Fig. 8. MUSCL-Hancock schemes. Evolved boundary extrapolated values (a) form
the data for a classical Riemann problem (b), whose solution (c) is used to compute
the flux at the interface

Fforce
i+ 1

2
= Fforce

i+ 1
2

(Q
R

i ,Q
L

i+1). (243)

So far the scheme has been described for the homogeneous version of the
non-linear system (225).

5.4 ADER2 for Non-linear Systems with Source Terms

Here we apply the ADER approach to construct second-order methods to
solve non-linear systems of m × m hyperbolic equations with source terms
(225) as solved by finite volume scheme of the type (226). In what follows, we
describe the ADER2 scheme for compting the numerical flux Fi+ 1

2
and the

numerical source Si.

The Numerical Flux

To compute the numerical flux Fi+ 1
2
, we solve the Derivative Riemann Prob-

lem (also called generalized Riemann problem of high-order Riemann problem)

PDEs: ∂tQ + ∂xF(Q) = S(Q),

IC: Q(x, 0) =

⎧
⎪⎨
⎪⎩

Pi(x) if x < 0,

Pi+1(x) if x > 0,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(244)
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where Pi(x) is a vector whose components are reconstructed polynomials of
degree one. The solution of (244) has the form

Q(0, τ) = Q(0, 0+) + τ∂tQ(0, 0+). (245)

The two terms in the expansion are computed as follows:

Step (I): The leading term. To compute the leading term, one solves the
classical Riemann problem (piece-wise constant data)

PDE: ∂tQ + ∂xF(Q) = 0,

IC: Q(x, 0) =

⎧
⎪⎨
⎪⎩

Pi(0) if x < 0,

Pi+1(0) if x > 0,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(246)

in which the initial condition consists of the two boundary extrapolated
values from left and right, that is Pi(0) from the left and Pi+1(0) from
the right. Figure 9 illustrates the steps to compute the leading term of
the expansion. Denoting the solution of (246) by D(0)

i+ 1
2
(x/t), the leading

term is given by

pi (x)

(a)

(b)

(c)

q (x,0)

0

0

Lqi + 1

xi + 1/2

x

x

t

R
qi

R
qi

R
Qi

Lqi + 1

L
Qi + 1

Qi + 1/2 (0)

Fig. 9. ADER2 scheme. Boundary extrapolated values from data reconstruction
(a) form the initial data for a classical Riemann problem (b), whose solution (c)
evaluated at the interface gives the leading term for the ADER2 flux
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Q(0, 0+) = D(0)

i+ 1
2
(0). (247)

One can use the exact Riemann solver, or any of the approximations
available, to compute the leading term.

Step (II): The higher order term. To compute the higher order term in
(245), we do the following:
1. The Cauchy–Kowalewski procedure. One uses the PDE in (225)

to express the time derivative in terms of the space derivative and the
source term,

∂tQ(x, t) = −A(Q)∂xQ + S(Q), (248)

where A(Q) is the Jacobian matrix.
2. Evolution equations for the space derivative. To determine the

space derivatives in (248), we first construct an evolution equation for
the spatial derivatives ∂xQ(x, t), namely

∂t(∂xQ) + A(Q)∂x(∂xQ) = H. (249)

3. Riemann problem for the spatial derivatives. We simplify (249)
by neglecting the source term H and linearising the equations by in-
troducing the constant coefficient matrix A(0) = A(Q(0, 0+)). We
obtain the linear system with constant coefficients

∂t(∂xQ) + A(0)∂x(∂xQ) = 0. (250)

Then we pose the classical homogeneous Riemann problem for the
spatial derivative of the vector Q:

PDEs: ∂t(∂xQ) + A(0)∂x(∂xQ) = 0

IC: ∂xQ(x, 0) =

⎧
⎪⎪⎨
⎪⎪⎩

Δi ≡ P
′

i(x) if x < 0,

Δi+1 ≡ P
′

i+1(x) if x > 0.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(251)

We solve this linear Riemann problem with constant coefficients to
obtain the similarity solution D(1)

i+ 1
2
(x/t). Then we take ∂xQ(0, 0+) =

D(1)

i+ 1
2
(0).

Step (III): The solution and the numerical flux. The sought complete
solution is

Q(0, τ) = Q(0, 0+) + τ [−A(0)D(1)

i+ 1
2
(0) + S(Q(0, 0+))]. (252)

Finally, according to (228), the numerical flux is obtained from
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Fi+ 1
2

=
1

Δt

Δt∫

0

F
(
Q(0, 0+) + τ [−A(0)D(1)

i+ 1
2
(0) + S(Q(0, 0+))]

)
dτ. (253)

Integration to second order gives

Fi+ 1
2

= F
(
Q(0, 0+) +

1
2
Δt[−A(0)D(1)

i+ 1
2
(0) + S(Q(0, 0+))]

)
. (254)

Note that the numerical flux for the inhomogeneous system (225) depends
on the source term. This is obviously not sufficient to complete the scheme;
we still need the numerical source.

Numerical Source

To compute the numerical source Si in the finite volume scheme (226), we
need to select the function Qi(x, t) in (229) and an integration scheme. For a
second order method, we may apply the mid-point integration rule in space
and time, so that one only requires the single value Qi(xi,

1
2Δt). At time t = 0,

within the cell i we have the reconstructed polynomial Pi(x). Applying the
Cauchy–Kowalewski method at the point xi gives

Q(xi, τ) = Qn
i + τ∂tQ(xi, τ) = Qn

i + [−A(Qn
i )Δi + S(Qn

i )]τ, (255)

so that the numerical source, to second order, is

Si = S
(
Qn

i +
1
2
Δt[−A(Qn

i )Δi + S(Qn
i )]
)

. (256)

5.5 Source Terms to Second-Order

It is not a trivial matter to construct a numerical scheme for systems with
source terms, even of second-order accuracy, that actually preserves second-
order for the full scheme. Here we implement and test three second-order
methods to deal with hyperbolic equations with source terms. We do so in
terms of the model advection–reaction equation

∂tq + λ∂xq = βq, (257)

with a source term s(q) = βq, where λ and β are two constants.

ADER2

The ADER approach has a very natural way of dealing with source terms to
any desired accuracy. Now for the model equation (257), for λ > 0, application
of the ADER2 method gives the numerical flux
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fi+ 1
2

= λ

[
qn
i +

1
2
(1 − c)ΔxΔi +

1
2
r(qn

i +
1
2
ΔxΔi)

]
, (258)

where
c =

λΔt

Δx
, r = Δtβ (259)

are the CFL number and a reaction number, both dimensionless quantities.
Note that the flux depends on the source term.

The numerical source, for any value of λ, is

si = β

[
(1 +

1
2
r)qn

i − 1
2
cΔxΔi

]
. (260)

MUSCL-Hancock

Here we emulate the ADER2 scheme for advection and reaction terms to treat
source terms to second-order of accuracy in the MUSCL-Hancock scheme.

To compute the numerical flux, we include the source term in the data
evolution step as follows

q̄L
i = qL

i − 1
2

Δt
Δx [f(qR

i ) − f(qL
i )] + 1

2Δt(βqL
i ),

q̄R
i = qR

i − 1
2

Δt
Δx [f(qR

i ) − f(qL
i )] + 1

2Δt(βqR
i ).

⎫
⎬
⎭ (261)

For λ > 0, simple manipulations give the numerical flux as

fi+ 1
2

= λ[qn
i +

1
2
(1 − c)ΔxΔi +

1
2
r(qn

i +
1
2
ΔxΔi)]. (262)

The numerical source in the MUSCL-Hancock scheme, by construction, is
taken to be identical to that of the ADER2 scheme.

WAF

We include here the WAF scheme; see [36] for a full description of the scheme
for homogeneous systems. For the WAF method we perform the following
steps:

• Evolve cell averages qn
i and qn

i+1 to

q̂n
i = qn

i + 1
2Δtβqn

i = (1 + 1
2r)qn

i ,

q̂n
i+1 = qn

i+1 + 1
2Δtβqn

i+1 = (1 + 1
2r)qn

i+1.

⎫
⎬
⎭ (263)

• Solve the classical (piece-wise constant data) Riemann problem with
evolved data q̂n

i and q̂n
i+1 to compute the usual WAF flux

fi+ 1
2

= λ[
1
2
(1 + c)(1 +

1
2
r)qn

i +
1
2
(1 − c)(1 +

1
2
r)qn

i+1]. (264)
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• Compute the numerical source, as in the ADER2 method,

si = β

[
(1 +

1
2
r)qn

i − 1
2
cΔxΔi

]
, (265)

where, for the WAF method, one needs the additional computation of a
slope. We take

Δi =
qi+ 1

2
− qi− 1

2

Δx
, (266)

with
qi− 1

2
= 1

2 (1 + c)qn
i−1 + 1

2 (1 − c)qn
i ,

qi+ 1
2

= 1
2 (1 + c)qn

i + 1
2 (1 − c)qn

i+1.

⎫
⎬
⎭ (267)

Other ways of computing the slope Δi in the WAF numerical source are
also possible.

A Test Problem with a Source Term

We solve the linear advection–reaction equation (257) in the domain [−1, 1],
with initial condition

q(x, 0) = q(0)(x) = sin(πx) (268)

Distance
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WAF-coarse mesh

WAF-finer mesh

Fig. 10. Model linear advection-reaction equation. Exact and numerical (WAF)
solutions
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and periodic boundary conditions. The exact solution for any initial condition
q0(x) is

q(x, t) = q(0)(x − λt)eβt. (269)

For the numerical experiments, we take λ = 1 and β = −1. Figure 10 shows a
comparison between the exact solution (line) and the WAF numerical solutions
for two meshes. Table 1 shows the convergence rates measured in two norms.
As can be seen, the expected second-order of accuracy is achieved.

Table 1. Advection and source term. Convergence rates for the WAF method in
two norms, for a sequence of four meshes (M = 10, 20, 40, 80)

M L∞-error L∞-order L1-error L1-order

10 3.28 × 10−2 4.24 × 10−2

20 7.86 × 10−3 2.06 1.00 × 10−2 2.08
40 1.82 × 10−3 2.11 2.33 × 10−3 2.10
80 4.51 × 10−4 2.02 5.74 × 10−4 2.02

5.6 Advanced Methods

In these five Sections I have presented the basics on numerical methods for
solving hyperbolic equations. I introduced finite difference methods in order
to analyse some of the main properties of the schemes. Most of the ma-
terial is however on finite volume methods. The treatment has also been
restricted to one-dimensional non-nonlinear systems with (non-stiff) source
terms. Two non-linear methods of second-order of accuracy have been stud-
ied, the MUSCL-Hancock method and the ADER2 method. Both schemes
can be extended to solve conservation laws in multiple space dimensions on
structured and unstructured meshes. For further reading on the subject, we
recommend the textbooks [36] and [21].

Regarding the advanced numerical methods of the future to solve non-
linear hyperbolic systems of balance laws, my wish list would require numerical
schemes to be able to

• treat stiff source terms;
• deal with multiple space dimensions;
• deal with complicated geometries;
• use unstructured meshes;
• have no theoretical accuracy barrier, neither in space nor in time;
• have the potential to accommodate the inclusion of other physical effects,

such as dissipative and dispersive effects.

With the pioneering work of Harten and collaborators, followed by more
recent developments, it seems to me as if we might be able to achieve the
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above ambitious goals in the near future and to have potent computational
methods available for advanced scientific computing.

The ADER approach [39] allows the construction of schemes of arbitrary
order of accuracy in both space and time. It is a generalisation to arbitrary
order of accuracy of the so-called Generalized Riemann Problem method (or
GRP method) of Ben-Artzi and Falcoviz [4], which is a second-order scheme.
See the original paper of Toro and collaborators [39] for preliminary results,
where schemes were formulated for linear equations in one, two and three
space dimensions on cartesian meshes.

The ADER approach is closely related to the high-order method of Harten
and collaborators [15]. See [6] for a comparative study. It could be said that
the ADER method is a generalization to arbitrary order of accuracy of the
second-order GRP scheme of Ben-Artzi and Falcovitz, and that the scheme
of Harten and collaborators is a generalisation of the second-order MUSCL-
Hancock scheme. Both approaches can be unified by considering the high-order
Riemann problem, that is the Cauchy problem in which the initial conditions
are, for example, high-order polynomials in space, and the solution at the
interface is a high-order polynomial in time.

Extensions of the ADER method to non-linear systems with source terms
were made possible by solving the high-order Riemann problem to any ac-
curacy; see [30, 40, 43]. The generalisation to multidimensional non-linear
problems on regular meshes is reported in [31] and [42]. The methodology
has been extended in a variety of ways and applied to a variety of physical
problems. See, for example, [7, 18, 26, 29].

The recent paper of Dumbser and collaborators [8] reports on the extension
of the ADER approach to solve the three-dimensional Euler equations on
unstructured meshes, using schemes of very high order of accuracy in both
space and time. The approach has also been extended to solve hyperbolic
balance laws with stiff source terms, reconciling (apparently for the first time)
three conflicting items: stiff source terms, explicit methods and high-order of
accuracy in space and time; see the work of Dumbser and collaborators [9].
The ADER approach has also been extended to solve parabolic equations. See
the works of Toro and Hidalgo [45], who solved non-linear diffusion–reaction
equations with schemes of up to 10th order of accuracy. See also the recent
paper by Gasnner and collaborators [12].
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8. Dumbser, M., Käser, M., Titarev, V.A., & Toro, E.F., Quadrature-free non-
oscillatory finite volume schemes on unstructured meshes for non-linear hyper-
bolic systems. JCP, 221(2), 693–723 (2007) 54, 55, 67

9. Dumbser, M., Enaux, C., & Toro, E.F., Explicit finite volume schemes of ar-
bitrary high order of accuracy for hyperbolic systems with stiff source terms.
Isaac Newton Institute for Mathematical Sciences, University of Cambridge,
UK, Preprint Series, NI07007-NPA (2007) 67

10. Einfeldt, B., On Godunov-type methods for gas dynamics. SIAMJNA, 25(2),
294–318 (1988) 43

11. Einfeldt, B., Munz, C.D., Roe, P.L., & Sjoegreen, B., On Godunov-type meth-
ods near low densities. JCP, 92, 273–291 (1991) 43
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Abstract. The purpose of the present review is to present and discuss some
introductory aspects relevant to computational compressible magnetohydrodynam-
ics (MHD). The shock-capturing framework developed for the Euler equations of
gasdynamics is extended to MHD by illustrating differences and additional com-
plexities introduced by the presence of magnetic fields. In particular, we focus our
attention on the characteristic structure of the equations by investigating the nature
of different MHD waves, the solution to the Riemann problem and last, but not
least, various computational strategies to control the divergence-free condition of
magnetic fields.

Keywords Magnetohydrodynamics (MHD) · Methods: numerical · Shock
waves · Waves

1 Introduction

Astrophysical plasmas can often be described by means of the ideal com-
pressible magnetohydrodynamic (MHD) equations. A far from exhaustive list
includes jets, accretion disks, stellar or galactic atmospheres, and the inter-
stellar medium. In many instances, one has to deal with flows with shocks
and discontinuities, and, in such situations, the numerical methods used in
the simulations are based on the shock-capturing framework developed for
the Euler equations of gasdynamics. The extension of such framework to
MHD has proven, however, to be nontrivial because of several properties
of the MHD system that makes it different from the Euler counterpart. A
first example of the problems encountered when moving from gasdynamic to
MHD is nonstrict hyperbolicity. This has been addressed by [5] and [40], and
following this and other advancements, several second-order upwind codes
were then constructed and tested mainly for the one-dimensional case, see
for example [2, 42, 50] and [10]. New problems have to be considered for the
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multidimensional case, in particular MHD equations are supplemented by the
condition of null divergence of the magnetic field that has to be preserved
during the evolution. A failure of the numerical scheme to maintain this con-
straint, as shown by [4], leads to unphysical effects in the solution. Several
different methods have then been proposed for dealing with this issue, see for
example [3, 4, 12, 17, 19, 29, 36].

In this review, after a presentation of the equations in Sect. 2, we will dis-
cuss their characteristic structure and the nature of the waves with particular
reference to the peculiarities of the MHD system in Sect. 3. The solution to
the Riemann problem is one of the main building blocks of shock capturing
methods, and our discussion will be focused on approximate solvers, in par-
ticular, of the HLL class. In the last section, we will deal with the other big
issue of computational MHD and will present several different computational
strategies for approaching the divergence free constraint.

2 The MHD Equations

The macroscopic dynamics of a plasma can be described, in many instances,
by the MHD equations. Describing the plasma, as a single fluid, in terms of
density ρ, velocity v, thermal pressure pg, and magnetic field B, the MHD
equations take the form

∂ρ

∂t
= −∇ · (ρv) , (1)

ρ
∂v
∂t

= −ρv · ∇v −∇pg + J × B, (2)

∂pg

∂t
= −∇ · (pgv) − (Γ − 1)

(
pg∇ · v − ηJ2

)
, (3)

∂B
∂t

= −∇× Ω, (4)

J = ∇× B , (5)

Ω = −v × B + ηJ , (6)

where Ω denotes the electric field. The units of B are chosen such that the
magnetic permeability of vacuum becomes equal to unity, μ0 = 1. In Eq. (5),
expressing the current density J in terms of the magnetic field, we neglected
the displacement current ∂Ω/∂t. This is justified if we are far from the rela-
tivistic regime, i.e., v � c. Eq. (6) is the Ohm’s law and η is the resistivity.
With respect to the Euler system of gasdynamics, we have, in Eq. (2), the
additional term J × B that represents the Lorentz force and in Eq. (3) the
Joule heating term ηJ2. Moreover, we have the additional induction equa-
tion (4) for the evolution of the magnetic field. The condition ∇ · B = 0
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represents a constraint that has to be satisfied by the magnetic field at all
times, and Eq. (4) ensures that if it is fulfilled at t = 0 it will be so at any
time. In system (1, 2, 3, 4, 5, 6) and in the rest of the Section, we keep the
resistive terms for completeness although we will not discuss their numerical
treatment.

Shock capturing methods are based on the conservation form that, for the
above system, can be written as:

∂ρ

∂t
= −∇ · (ρv) , (7)

∂ρv
∂t

= −∇ ·
(

ρvv + Ipg + I
B2

2
− BB

)
, (8)

∂E

∂t
= −∇ ·

(
v (E + pg) + v ·

(
I
B2

2
− BB

)
− B × ηJ

)
, (9)

∂B
∂t

= ∇× (v × B − ηJ) , (10)

where I is the unit dyadic and the total energy density E is defined as

E =
pg

Γ − 1
+

ρv2

2
+

B2

2
. (11)

The above conservation equations can be written in the compact form

∂U
∂t

+ ∇ · F = 0 , (12)

where the vector U of conserved quantities and the vector F of fluxes, ne-
glecting resistivity, are given, respectively, by

U =

⎛
⎜⎜⎜⎜⎜⎝

ρ

ρv

E

B

⎞
⎟⎟⎟⎟⎟⎠

, F =

⎡
⎢⎢⎢⎢⎢⎣

ρv

ρvv + Ip − BB

(E + p) v − (v · B)B

vB − Bv

⎤
⎥⎥⎥⎥⎥⎦

, (13)

where p = pg + B2/2 denotes the total pressure.

3 The Riemann Problem in MHD

The solution to the Riemann problem in magnetohydrodynamics is paved by
several additional complications when compared to the underlying hyperbolic
system of the Euler equation of gasdynamics. The increased complexity cannot
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be ascribed just to the increased number of waves due to a larger number of
equations, but also to the fact that the system is non strictly hyperbolic with
non convex flux function, and the characteristic fields are no longer either
genuinely non linear or linearly degenerated. In this respect, non regular waves
like compound waves and overcompressive intermediate shocks may be formed
in MHD.

As usual, one starts with the problem definition, i.e., a discontinuity sep-
arating a pair of arbitrary constant left and right states,

U(x, t = 0) =

{
UL for x < 0,

UR for x > 0 .
(14)

As with hydrodynamics Riemann solvers, the initial jump will decay into a
set of uniform states separated by left- and right-facing shock and rarefaction
waves. In general, at t > 0, the full structure comprises a total of eight states
(including the original ones) separated by seven waves, see Fig. 1. With the
exception of the entropy mode associated with a contact discontinuity moving
at the speed of the fluid, the other six waves are related to fast, Alfvén, and
slow characteristics and can be either shocks or rarefactions. In addition to
this, two families of waves may occasionally have the same speeds or develop
compound wave structures where both a shock and a rarefaction propagate

U

U

U
U

U
U

U

U

u

u
u

t

u c

u c

cu
c

c

u c

x

Fig. 1. General structure of the Riemann fan generated by two initial constant
state UL and UR. The pattern comprises seven waves corresponding to a pair of
fast (u±cf), Alfvén (u±cA), slow (u±cs) modes separated by a contact discontinuity
in the middle (u). The waves bound six new constant states, from left to right, U fA,
UAs, U sc, U cs, U sA, UAf
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ρ ρg

vyvx

Bx
By

Fig. 2. The Brio-Wu shock tube problem. From left to right, the solution involves
five waves: a fast rarefaction wave, a slow compound wave, a contact wave, a slow
shock, and a fast rarefaction. Here Γ = 2. Density and pressure are shown in the
top panels, velocities in the middle ones, and magnetic fields in the bottom panels.
Results have been obtained using an adaptive grid with an equivalent resolution of
12, 800 grid zones

adjacent to one another. An example of such situation is encountered in the
Brio and Wu [5] shock tube problem, with initial left and right data given
by (ρ, pg)L = (1, 1), BL = (3/4, 1, 0), vL = vR = 0, (ρ, pg)R = (1/8, 1/10)
and BR = (3/4,−1, 0). The results computed with the PLUTO code [34] are
shown in Fig. 2: a compound structure consisting of a slow compressive shock
and a rarefaction is clearly visible at x ≈ 0.46. This peculiar behavior is a
direct consequence of the fact that the MHD system of equations are neither
strictly hyperbolic nor strictly convex. For these reasons, unlike the Euler
equations of gasdynamics, a closed form solution to the Riemann problem in
MHD cannot be found.

Instead, accurate solvers may be constructed in the regular case by pro-
ceeding as for the hydrodynamical problem, [7, 8, 9, 18, 42, 50]. This demands
the simultaneous solution of the Rankine-Hugoniot jump conditions across
each wave by a self-consistent procedure that resolves fast, slow, and Alfvén
waves to the left and right of the contact (tangential in the degenerate case)
discontinuity, always located at the center of the structure.
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3.1 Discontinuities

The jump conditions can be derived directly from the original conservation
law by integrating across a discontinuous surface. They are better expressed
in Lagrangian mass coordinates,

W

[
1
ρ

]
= − [u] ,

W [u] = [p] ,

W [vt] = −Bx [Bt] ,

W

[
Bt

ρ

]
= −Bx [vt] ,

W

[
E

ρ

]
= [up] − Bx [B · v] ,

(15)

where W is the mass flux entering a discontinuity surface and [·] is the differ-
ence between the two states on each side of the front.

In the previous equations, p = pg +B2/2 denotes the total pressure, u and
Bx are the projections of the velocity and magnetic field vectors on the discon-
tinuity normal, and the subscript t refers to the tangential components. Note
also that the normal component of magnetic field, Bx, is constant throughout
the Riemann fan and should be regarded as a parameter.

Rotational waves are linear waves characterized by

[u] = [pg] =
[
B2

t

]
= [ρ] = 0 . (16)

Thus thermodynamical quantities such as density and pressure remain un-
altered across the discontinuity and only tangential components can change.
Indeed, vector fields experience a rotation without changing their magnitude,
meaning that the total pressure is also continuous, i.e., [p] = 0. For this rea-
son, a rotational discontinuity cannot be formed by the steepening of a smooth
disturbance. Rotational waves propagate at the Alfvén speed relative to the
fluid, u ± Bx/

√
ρ.

Shock waves are physically admissible if the entropy is increased through
the front. Through a shock wave, all hydrodynamics variables including den-
sity, pressure, velocity, and magnetic fields are subjected to a jump. From the
third and fourth equations in (15), one sees that the magnetic field on both
sides of the shock lies on the same plane and no rotation takes place. Thus
only the magnitude of the field can change.

A fast shock is characterized by an increased magnitude of the trans-
verse magnetic field when passing from the pre shock to the post shock
state [7, 25]. This has the consequence to bend the field lines away from
the shock normal. The downstream magnetic field, however, is not a mono-
tonic function of the Mach number for sufficiently large values of Bx. This



Shock-Capturing Schemes in Computational MHD 77

means that the transverse component of B in the downstream state does not
determine the post shock values uniquely [18, 25].

Through a slow shock, on the contrary, the magnitude of the transverse
component of magnetic field decreases from the upstream to the downstream
state. In this case, the magnetic field bends towards the shock normal. Slow
shocks are more peculiar than fast shocks [47], since all the familiar quantities
(i.e., pressure, density, and transverse field) do not behave in a monotonic
way. Furthermore, the range of Mach number values for which a slow shock
can exist is finite.

Shocks propagating in the direction of the magnetic field are called parallel
shocks. In this case, Bt vanishes on both sides of the discontinuity (although
Bx �= 0) and the shock becomes purely hydrodynamical. In the case of a fast
shock, however, another solution exists where the tangential magnetic field
vanishes ahead of the front but Bt �= 0 in the downstream region. Such a
particular configuration is called a switch-on shock, since the magnetic field
is “turned-on” behind the shock. In the frame of the front, the downstream
fluid moves at the local Alfvén velocity. It is worth mentioning that switch-
on shocks only exist in a small range of upstream parameters [26], namely
B2

x > Γp and

1 < MA <

√
Γ (1 − β) + 1

Γ − 1
, (17)

where MA = v/cA is the Alfvénic Mach number and β = 2p/B2
x is the plasma

β. A reverse situation is encountered in the case of a slow shock; in this case Bt

is zero in the downstream region, while it does not vanish in the upstream.
This configuration corresponds to a switch-off shock, since the post shock
magnetic field is switched off. Such fronts propagate at the Alfvén speed of
the upstream medium.

When Bx = 0, we have a perpendicular (normal) shock. From the jump
conditions (15), one immediately sees that the tangential velocity does not
change through the discontinuity and the magnetic field is compressed by the
same ratio as for the density, without changing its direction.

Figure 3 shows the wave pattern emerging from an initial jump [2]
separating a left state with (ρ, p)L = (1.08, 0.95), vL = (1.2, 0.01, 0.5),
BL = (2, 3.6, 2)/

√
4π from a right state with (ρ, p)R = (1, 1), vR = 0,

BR = (2, 4, 2)/
√

4π. As it can be seen, the solution involves discontinuities
only; two opposite moving fast shocks followed by two rotational waves and
slow shocks. The contact discontinuity is located at the center of the struc-
ture. Computations have been carried with Γ = 5/3 using the PLUTO code
together with the Roe Riemann solver described below.

3.2 Rarefaction Waves

Fast and slow modes allow gas expansion by rarefaction waves. Across them,
flow variables experience a smooth transition and the admissible states may be
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ρ pg p

VzVyvx

Bx By Bz

Fig. 3. A shock tube problem. Density, thermal, and total pressures are plotted in
the top panels. Velocity and magnetic field components are shown in the middle and
bottom panels, respectively. The outcoming wave structure involves two outermost
fast shocks, enclosing two rotational waves containing two slow shocks separated by
a contact wave

found from the integral curves which follow the eigenvectors of the hyperbolic
system. Given the decomposition of the Jacobian matrix ∂F (U)/∂U in terms
of right and left ortho-normal eigenvectors Rk,Lk (Rk ·Lm = δkm) associated
with eigenvalues λk, one can proceed as for the hydrodynamical case, that is,
by replacing the set of jump conditions (15) with a set of ordinary differential
equations:

dU

dσ
= Rk , (18)

where σ is a parameter along the curve. Equation (18) implies conservation
of all Riemann invariants

dwm ≡ Lm · dU = 0 for m �= k , (19)

not associated with the wave involved. It can be shown [47] that, in contrast
to a shock wave, the transverse components of the magnetic field always de-
crease through a fast rarefaction and increase through a slow one. As for the
hydrodynamical case, the entropy is constant throughout the Riemann fan.
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3.3 Approximate Riemann Solvers

In what follows, we will restrict our attention to the one-dimensional set of
MHD equations written in conservation form,

∂U

∂t
+

∂F

∂x
= 0 , (20)

with conservative variables and fluxes given, respectively, by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

ρvt

Bx

Bt

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p − B2
x

ρvtu − BtBx

0

Btu − vtBx

(E + p)u − (v · B)Bx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

The discrete version of Eq. (20) takes the difference form

Un+1
i = Un

i − Δt

Δx

(
f̂ i+ 1

2
− f̂ i− 1

2

)
. (22)

The numerical flux functions f̂ are computed at each cell interface i + 1
2 by

solving a Riemann problem between suitable left and right input states. For
a first-order scheme, these states are provided by Un

i and Un
i+1,

respectively.
Nonlinear methods are based on the simultaneous solution of the Rankine

Hugoniot jump conditions (15) or the smooth relations (18) across all waves
in the system. The strategy proceeds by linking each constant state inside
the Riemann fan with the next adjacent one, by exploiting the properties of
the wave separating them. Approximate nonlinear solutions have been pre-
sented by [7, 8, 9], which treat rarefaction waves as discontinuities (“rare-
faction shocks”). This simplification is sufficiently accurate in the limit of
weak rarefactions and/or small time steps, such as the ones typically used
in explicit methods. Exact Riemann solvers that correctly treat rarefaction
waves have been proposed by [18, 42].

In either case (exact or approximate), nonlinear methods are rather
involved and computationally intensive. This has motivated the probe of
simplified, more efficient strategies of solution based on different levels of
approximation. Indeed, the most popular methods nowadays adopted for the
solution of the Riemann problem in computational MHD lean on approxi-
mate solvers. In what follows, we present a brief overview of the most popular
approaches adopted.
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Lax-Friedrichs and Rusanov Solvers

Perhaps the simplest approximation comes from the Lax-Friedrichs or Rusanov
fluxes. The original Lax-Friedrichs method results from the attempt of sta-
bilizing the unstable FTCS (forward in time, central in space) discretization.
Specifically, one has

f̂ =
1
2

[F L + F R − c (UR − UL)] , (23)

where F L ≡ F (UL) and F R ≡ F (UR). Choosing c = Δx/Δt yields the
original Lax-Friedrichs scheme [27]. A considerably less diffusive variant is
given by the Rusanov flux [41], where c is taken to be the maximum signal
velocity |λmax|. For the MHD equations, the obvious choice is

λmax = |u| + cf , (24)

where both u and cf may be evaluated using the average state URL = (UL +
UR)/2.

The Rusanov flux is computationally inexpensive and straightforward to
implement, since it does not require any characteristic information. Numerical
experience shows that the scheme is quite robust and well-behaved, although
rather diffusive, since all the knowledge about the wave structure inside the
Riemann problem is avoided.

The Scheme of Harten–Lax–van Leer (HLL)

The HLL method, originally devised by Harten, Lax, and van Leer [22] for
classical gasdynamics, has gained increasing popularity among researchers in
the last decades.

The HLL scheme is formulated in terms of an integral average across the
Riemann fan provided the leftmost (λL) and rightmost (λR) signal speeds can
be estimated. This leads to an approximation of the Riemann fan structure
where all the intermediate wave patterns are averaged into a single constant
state bounded by two outermost waves, see Fig. 4. In other words, the solution
to the Riemann problem on the x/t = 0 axis consists of three possible constant
states:

U(0, t) =

⎧
⎪⎪⎨
⎪⎪⎩

UL if λL ≥ 0,

Uhll if λL ≤ 0 ≤ λR,

UR if λR ≤ 0 .

(25)

The single state Uhll is constructed from an a priori estimate of the fastest
and slowest signal velocities λL and λR:

Uhll =
λRUR − λLUL + F L − F R

λR − λL
, (26)
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Fig. 4. Approximate structure of the Riemann fan used in the HLL solver: the
whole fan has been lumped into a single state Uhll and flux F hll

where F L = F (UL), F R = F (UR). Notice that Eq. (26) represents the
integral average of the solution of the Riemann problem over the wave fan [46].
Demanding consistency with the jump condition across either of the bounding
waves, the corresponding interface numerical flux can be derived as:

f̂ =

⎧
⎪⎪⎨
⎪⎪⎩

F L if λL ≥ 0,

F hll if λL ≤ 0 ≤ λR,

F R if λR ≤ 0 ,

(27)

where

F hll =
λRF L − λLF R + λRλL(UR − UL)

λR − λL
. (28)

Thus, given an estimate for the fastest and slowest signal speeds λR and λL,
an approximate solution to the Riemann problem can be constructed and
the intercell numerical flux is computed according to (27). Note that, in the
supersonic case (λL > 0 or λR < 0), the HLL approximation gives the exact
solution by selecting the correct upwind flux.

The algorithm is complete once λL and λR have been specified. Several
estimates have been proposed, see for example [15, 16, 45, 46]. A popular
choice [15], for example, is to compute the signal velocities using the data
available in the left and right states, and then define

λL = min
[
λ−(UL), λ−(UR)

]
, λR = max

[
λ+(UL), λ+(UR)

]
. (29)

The HLL approach does not require a full characteristic decomposition
of the equations and, for this reason, it is straightforward to implement in
any functioning MHD code. Besides its computational efficiency and ease of
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implementation, the HLL scheme has the attractive feature of being positively
conservative in the sense that preserve initially positive densities, energies,
and pressures. Despite its reliability, however, it lacks the ability to resolve
intermediate structures such as Alfvén, slow, and contact modes. This results
in a more diffusive behavior than other more sophisticated algorithms.

The HLLC Approximate Riemann Solver

The HLLC scheme [1, 45] improves over HLL by replacing the single averaged
state defined by (26) with two approximate states, U∗

L and U∗
R. These two

states are separated by a middle wave which is assumed to have constant
speed λ∗,

U(0, t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

UL if λL ≥ 0,

U∗
L if λL ≤ 0 ≤ λ∗ ,

U∗
R if λ∗ ≤ 0 ≤ λR ,

UR if λR ≤ 0 ,

(30)

and the corresponding inter cell numerical fluxes become

f̂ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F L if λL ≥ 0,

F ∗
L if λL ≤ 0 ≤ λ∗ ,

F ∗
R if λ∗ ≤ 0 ≤ λR ,

F R if λR ≤ 0 .

(31)

This configuration is schematically depicted in Fig. 5.

U L
U R

λ L

λ *

λ R

F L
*

U L
* U R

*

F R
*

t

x

Fig. 5. Approximate structure to the Riemann fan used by the HLLC solver: the
whole fan has been reduced to two single states, U ∗

L and U ∗
R, separated by a middle

wave λ∗
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Note that, even if F α ≡ F (Uα) for α = {L,R}, one cannot take F ∗
α =

F (U∗
α). The intermediate fluxes F ∗

L and F ∗
R, in fact, should be computed

consistently from the Rankine-Hugoniot jump conditions across each wave:

λα (U∗
α − Uα) = F ∗

α − F α , (32)

where α = L or α = R for the left or right state, respectively. In this respect,
F ∗

L and F ∗
R should be regarded as independent unknowns in the problem.

Additionally, if the middle wave is taken to be a contact discontinuity, states
and fluxes should also satisfy the jump conditions across it,

λ∗ (U∗
L − U∗

R) = F ∗
L − F ∗

R , (33)

by consistently demanding continuity of magnetic field, velocity, and total
pressure across λ∗. Equation (32) may be replaced by two alternative sets
derived by direct summation of the jump relations across all waves [31, 32, 33].

The first set yields the traditional consistency conditions [46] in terms of
the state vectors U∗

L and U∗
R,

(λ∗ − λL)U∗
L + (λR − λ∗)U∗

R

λR − λL
= Uhll , (34)

where Uhll is given by Eq. (26). The second set, obtained after dividing each
jump condition by the corresponding wave speed and adding the resulting
expressions, yields a similar relation for the fluxes F ∗

L and F ∗
R:

F ∗
LλR(λ∗ − λL) + F ∗

RλL(λR − λ∗)
λR − λL

= λ∗F hll , (35)

where F hll is given by Eq. (28).
The problem is well posed if the number of unknowns exactly matches

the number of available equations. Considering the normal component of the
magnetic field, Bx, as a constant parameter, one has at disposal a total of
21 equations: 14 for the outer waves (7 + 7) and 7 from the jumps across the
middle contact wave, Eq. (33). Since λ∗ is unknown (it is not determined a
priori), it follows that states and fluxes in the star region should be written in
terms of 20 unknown variables, 10 per state. There is, however, some degree
of freedom in choosing this representation.

Both Gurski [21] and Li [28] proposed to express the unknowns and fluxes
in the star regions as

U∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∗α

ρ∗αλ∗

ρ∗αv∗
tα

B∗
tα

E∗
α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F ∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∗αλ∗

ρ∗α(λ∗)2 + p∗ − B2
x

ρ∗αv∗
tα

λ∗ − BxB∗
tα

B∗
tα

λ∗ − v∗
tα

Bx

(E∗
α + p∗α)λ∗ − Bx (B · v)∗α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)
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where α = L or α = R for the left or right state, respectively. In Eq. (36)
the fluid normal velocity is assumed to be continuous across the contact mode
and equal to the speed of the discontinuity itself, that is, λ∗ = u∗

L = u∗
R. By

exploiting the continuity of tangential magnetic field and total pressure across
the contact (entropy) mode, one can easily find, from Eqs. (34) and (35), the
unique choices

λ∗ =
mhll

x

ρhll
, B∗

tL = B∗
tR = Bhll

t , p∗L = p∗R = F hll
[mx] + B2

x − F hll
[ρ] λ

∗ , (37)

where mhll
x and Bhll

tα
are, respectively, the normal momentum and trans-

verse magnetic field components given by the HLL-averaged state Uhll,
see Eq. (26).

In [28], the expressions for density and transverse components of mo-
mentum are derived from the jump conditions across the outermost waves,
Eq. (32):

ρ∗α = ρα
λα − uα

λα − λ∗ , (ραvtα
)∗ = ρ∗αvtα

− Bx

B∗
tα

− Btα

λα − λ∗ , (38)

and similarly for the energy:

E∗
α =

Eα(λα − uα) + (p∗λ∗ − pαuα) − Bx

[
(B · v)∗α − Bα · vα

]
λα − λ∗ , (39)

where, from the consistency condition, one must have (B · v)∗L = (B · v)∗R.
Since B∗

tL = B∗
tR is continuous across the middle wave, a possibility is to set

v∗ = mhll/ρhll as done in [28]. However, this choice is somewhat inconsis-
tent with the expression of v∗

tL and v∗
tR recovered from the second equation

in (38). Indeed, Li’s formulation introduces only nine unknowns per state:
ρ∗, λ∗,v∗

t ,B
∗
t , E

∗, p∗, and (v · B)∗. As such, it has been derived by using 18
equations only, namely the 14 jumps across the outer waves, Eq. (32), together
with the imposed continuity of u∗, B∗

t , and p∗. Consequently, it fails to satisfy
some of the jump relations across the middle wave as it can be verified from
the components of the induction equation.

Similar inconsistencies can also be found in [21], which defines both nor-
mal and tangential velocities as ratios between HLL-averaged momentum and
density, i.e., v∗

L ≡ v∗
R = mhll/ρhll. In a second derivation, in the attempt to

gain further benefits from the introduction of the middle wave (such as cap-
turing isolated slow or Alfvén waves), Gurski [21] relaxes the assumption of
continuity in the transverse component of v and B. The resulting U∗

L and U∗
R

derived in this way do not satisfy the jump conditions. This freedom comes at
the extra cost of introducing a dissipation terms to control unwanted spurious
numerical oscillations.

A consistent formulation may be derived by following [32], who extended
the HLLC formalism to the equations of relativistic MHD. Since one must
have 10 unknowns per state, the following expressions can be introduced
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U∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∗α

ρ∗αλ∗

m∗
tα

B∗
tα

E∗
α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F ∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∗αλ∗

ρ∗α(λ∗)2 + p∗ − B2
x

m∗
tα

λ∗ − BxB∗
tα

B∗
tα

λ∗ − v∗
tα

Bx

(E∗
α + p∗α)λ∗ − Bx (B · v)∗α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

where m∗
tα

is the transverse momentum. One must realize that, for the sake
of consistency, one has to assume ρ∗αv∗

tα
�= m∗

tα
in the previous equations,

although one still has m∗
xα

= ρ∗αλ∗. This comes from the fact that the average
momentum is not simply equal to the average density times the average veloc-
ity. Note that the proposed formulation is not necessarily unique; for example,
there is some degree of freedom in writing term (v ·B)∗ in the energy flux as
v∗ · B∗ or m∗ · B∗/ρ∗. Nevertheless, the advantage offered by the previous
expressions is the introduction of 10 unknowns per state, complemented by 14
equations across the outer fast shocks and six additional constraints imposed
through the entropy mode:

[p∗] = [λ∗] = [B∗
tα

] = [v∗
tα

] = 0 . (41)

As for Li’s solver, this leads to the unique choices given by Eq. (37). However,
although the first equation for ρ∗α in (38) still holds, the second one should be
replaced by:

m∗
tα

= mtα

λα − uα

λα − λ∗ + Bx

Btα
− B∗

tα

λα − λ∗ . (42)

Having defined the magnetic field, the velocities can be derived directly from
Eq. (35),

v∗
tα

=
B∗

tα
λ∗ − F hll

Btα

Bx
, (43)

which may become ill defined as Bx → 0. However this is not the case here,
since what really matters in the induction and energy fluxes in Eq. (40) is
Bxv∗

tα
rather than the transverse velocity. Finally, the energy can be obtained

from Eq. (39) by using either v∗ · B∗ or m∗ · B∗/ρ∗.

The Multi state HLL Solver: HLLD

The formulation adopted by Miyoshi and Kusano [35] solves the apparent
incompatibilities introduced by the HLLC approach. The “HLLD solver” (“D”
stands for “discontinuity”), introduced by [35], approximates the structure of
the Riemann fan introducing five waves corresponding to two outermost fast
shocks (λL and λR) and two rotational discontinuities (λ∗

L and λ∗
R) separated

by a contact mode in the middle (λ∗
c). The resulting structure comprises four

states, U∗
L, U∗∗

L , U∗∗
R , and U∗

R as shown in Fig. 6. Across the rotational
waves, density, total pressure, and the normal component of velocity remain



86 A. Mignone and G. Bodo

U L
U R

λ L

λ R
F L

*

U L
*

F R
*

U R
*

U R
**

**F R

U L
**

**F L

t

x

λ L
* λ C

*
λ R

*

Fig. 6. Approximate structure to the Riemann fan used by the HLLD solver. Five
waves separating four states are adopted. The outermost waves λL and λR corre-
spond to fast shocks, while λ∗

L and λ∗
R identify rotational discontinuity. The central

wave λ∗
c is the entropy mode

continuous. On the other hand, one must conserve Bt, v, and total pressure
p through the contact mode. Since slow modes are not allowed inside the
structure, p and u can be assumed constant throughout the Riemann fan and
the normal velocity corresponds to the speed of the middle (entropy) wave.
State and flux vectors retain the representation given by Eq. (36) in terms of
eight unknown quantities in each state: ρ∗, λ∗,v∗

t ,B
∗
t , E

∗, and p∗. As shown
below, this formulation leads to a well-posed problem.

As a starting point, one can conveniently extend the derivation of the
consistency conditions (34) and (35) to

(λR − λ∗
R) U∗

R + (λ∗
R − λ∗

c) U∗∗
R + (λ∗

c − λ∗
L) U∗∗

L + (λ∗
L − λL) U∗

L

λR − λL
= Uhll ,

(44)
and, setting η = 1/λ,

(ηR − η∗
R) F ∗

R + (η∗
R − η∗

c ) F ∗∗
R + (η∗

c − η∗
L) F ∗∗

L + (η∗
L − ηL) F ∗

L

ηR − ηL
= F hll .

(45)
Since ρ∗α = ρ∗∗α , the density and momentum components of (44) yield the
obvious choice

λ∗
c ≡ u∗

L = u∗∗
L = u∗∗

R = u∗
R =

mhll
x

ρhll
. (46)

Likewise, using the same components in Eq. (44) one has

p∗ ≡ p∗L = p∗∗L = p∗∗R = p∗R = F hll
[mx] + B2

x − F hll
[ρ] λ

∗
c . (47)

The jump conditions across the outermost waves can now be used to determine
the flow variables in the star regions as
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ρ∗α = ρα
λα − uα

λα − λ∗
c

, (48)

B∗
tα

= Btα

ρα (λα − uα)2 − B2
x

ρα(λα − uα)(λα − λ∗
c) − B2

x

, (49)

v∗
tα

= vtα
− Bx

B∗
tα

− Btα

ρα(λα − uα)
, (50)

E∗
α =

(λα − uα) Eα − pαuα + p∗λ∗
c + Bx (vα · Bα − v∗

α · B∗
α)

λα − λ∗
c

, (51)

where α = L or α = R for the left or right state, respectively.
The jump conditions across the rotational modes λ∗

L and λ∗
R,

λ∗
α (U∗∗

α − U∗
α) = F ∗∗

α − F α , (52)

cannot be solved independently to satisfy B∗∗
tL = B∗∗

tR and v∗∗
tL = v∗∗

tR, unless
the equations are linearly dependent. Indeed, only two out of the four relations
for the transverse vector fields (for each wave) can be regarded independent,
provided the speeds of the discontinuities are chosen to satisfy

λ∗
L = λ∗

c −
|Bx|√

ρ∗L
, λ∗

R = λ∗
c +

|Bx|√
ρ∗R

. (53)

The consistency condition (44) can now be used to find the state variables on
either side of the entropy wave:

v∗∗
tL = v∗∗

tR =

√
ρ∗Lv∗

tL +
√

ρ∗Rv∗
tR + (BtR − BtL) σx√

ρ∗L +
√

ρ∗R
, (54)

B∗∗
tL = B∗∗

tR =

√
ρ∗LB∗

tR +
√

ρ∗RB∗
tL +

√
ρ∗Lρ∗R (vtR − vtL) σx√

ρ∗R +
√

ρ∗L
, (55)

with σx = sign(Bx). For the energy one finds

E∗∗
L = E∗

L −
√

ρ∗L (v∗
L · B∗

L − v∗∗
L · B∗∗

L ) σx , (56)

E∗∗
R = E∗

R +
√

ρ∗R (v∗
R · B∗

R − v∗∗
R · B∗∗

R ) σx . (57)

As one can see, the problem is defined in terms of 32 unknowns (eight
per state) complemented by 32 independent non trivial equations: 14 across
the outermost waves (seven for α = L and seven for α = R), six continuity
conditions across the contact mode:

[p] = [u] = 0 , [Bt] = [vt] = 0 , (58)

and 12 conditions across the rotational waves, six of which are given by



88 A. Mignone and G. Bodo

[ρ] = [u] = [p] = 0 , (59)

(across λ∗
L and λ∗

R), plus six independent jump conditions for Bt, vt, and E.
It is now straightforward to compute the inter cell numerical flux:

f̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F L if λL ≥ 0,

F ∗
L if λL ≤ 0 ≤ λ∗

L ,

F ∗∗
L if λ∗

L ≤ 0 ≤ λ∗
c ,

F ∗∗
R if λ∗

c ≤ 0 ≤ λ∗
R ,

F ∗
R if λ∗

R ≤ 0 ≤ λR ,

F R if λR ≤ 0 .

(60)

The HLLD flux is found to be robust with an accuracy comparable to that
of the Roe scheme. Recently, [33], this methodology has been extended to the
isothermal MHD equations.

The Scheme of Roe

Roe’s scheme [39] tries to resolve the initial jump by replacing the original
conservation law with a linearized system of constant coefficients. Thus one
proceeds by seeking the exact solution to the following linearized Riemann
problem: ⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

∂U

∂t
+ ALR · ∂U

∂x
= 0,

U(x, 0) =

{
UL for x < 0,

UR for x > 0.

(61)

where ARL ≡ A(UL,UR) is a constant matrix. The matrix ALR is called a
Roe matrix if the following requirements are met [46]:

• Consistency with the original conservation law: A(U ,U) = A(U), where
A is simply the jacobian of the flux, i.e., A (U) = ∂F (U)/∂U

• Conservation across discontinuities:

F (UR) − F (UL) = ALR · (UR − UL) . (62)

• Hyperbolicity: A must have a complete set of real eigenvalues λk(UL,UR)
and associated left and right eigenvectors Lk and Rk such that

A · Rk = λkRk, Lk · A = λkLk. (63)

Roe’s scheme is thus equivalent to the solution of the Riemann problem
for a system of advection equation with linear constant coefficients, for which
the flux function takes the form:
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f̂ =
F L + F R

2
− 1

2

∑
k

(Lk · ΔU) |λk|Rk, (64)

and ΔU = UR −UL. Despite the original method of Roe, initially developed
for the Euler equation of gasdynamics, has been extended to MHD using sim-
pler averages (e.g., the arithmetic average, see for example [5, 37, 42, 44],
Cargo and Gallice [6] showed how the correct Roe matrix for MHD can be
constructed for any value of the specific heat ratio Γ . For the sake of com-
pleteness, we report hereafter the expressions. To this purpose, we introduce
two different Roe averages for any flow quantity Q by defining

Q =
√

ρLQL +
√

ρRQR√
ρL +

√
ρR

, Q =
√

ρRQL +
√

ρLQR√
ρL +

√
ρR

. (65)

Velocity and specific enthalpy H = (E + p)/ρ are computed using the first
definition, whereas density and transverse components of the field follow the
second one. In other words, v,H ∈ Q, while ρ,Bt ∈ Q. Next we compute the
jumps in conservative variables, that is, ΔU = UR −UL. The pressure jump
is derived accordingly as

Δp = (Γ − 1)
[(

v2

2
− X

)
Δρ − v · Δ (ρv) + ΔE − B · ΔB

]
, (66)

with
X =

ΔB · ΔB

2
(√

ρL +
√

ρR

)2 . (67)

Now, according to the chosen set of variables, we compute the sound speed a
and Alfvén velocity cA as

a2 = (2 − Γ )X + (Γ − 1)
(

H − v2

2
− B2

ρ

)
, c2

A =
B2

x

ρ
, (68)

while fast and slow velocities cf and cs are given by

c2
f =

1
2

(
a2 +

B2

ρ
+
√

(a2 − b2)2 + 4b2
t a

2

)
, c2

s =
a2c2

A

c2
f

. (69)

Having defined the Roe average, we now give the expressions for the right
eigenvectors Rk and wave strengths Lk ·ΔU required in Eq. (64). For conve-
nience, we define [6]

αf =
a2 − c2

s

c2
f − c2

s

, αs =
c2
f − a2

c2
f − c2

s

, Ss = αscsσx , Sf = αfcfσx , (70)

where σx = sign(Bx). The right eigenvectors for the fast modes f± with
eigenvalues λf± = u ± cf are
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Rf± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αf

αfλf±

(αfvt ∓ Ssβt)
αs√

ρ
aβt

αf

(
H∗ − B2

ρ
± vxcf

)
∓ Ss (vt · βt) +

αs√
ρ
a |Bt|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (71)

Similarly, the expressions for the slow modes s± associated with λs± = u± cs

follow:

Rs± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αs

αsλs±

(αsvt ± Sfβt)

− αf√
ρ
aβt

αs

(
H∗ − B2

ρ
± vxcs

)
± Sf (vt · βt) −

αf√
ρ
a |Bt|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (72)

The linear modes are given by the rotational Alfvén waves propagating at
λA± = u ± cA and the entropy contact mode moving at the flow velocity
λu = u. The associated expressions for the corresponding right eigenvectors
are found to be

Ru =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u

vt

0

v2

2
+

Γ − 2
Γ − 1

X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, RA± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

±ρβt × n̂

−S
√

ρβt × n̂

±ρ (vt × βt · n̂)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (73)

We conclude the presentation by providing the expressions for the wave
strengths:

Lf± · ΔU =
αfY ∓ ρSsβt · Δvt ± ραfcfΔu +

√
ραsaβt · ΔBt

2a2
, (74)

Ls± · ΔU =
αsY ± ρSfβt · Δvt ± ραscsΔu −√

ραfaβt · ΔBt

2a2
, (75)

and

LA± · ΔU =
βt

2
×
[
∓Δv +

S
√

ρ
ΔBt

]
· n̂ , Lu · ΔU = 1 − Y

a2
, (76)
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where Y = (XΔρ + Δp), and n̂ is the unit vector normal to the discontinuity
front.

The Riemann solver of Roe is able to correctly capture any isolated
regular discontinuity, including fast, slow, Alfvén, and contact fronts. In
some circumstances, however, the Roe solver can fail giving rise to un-
physical (negative) pressures or trigger spurious numerical instabilities, such
as the carbuncle phenomenon, [38]. Also, the assumption of strict hyper-
bolicity ceases when some of the eigenvectors are not linearly independent
anymore, [40]. For this reason, regions of the flow that might potentially
cause problems are treated with an hybrid Riemann solver that selectively
switch from Roe’s scheme to a more robust (albeit less accurate) scheme
such as HLL.

4 The ∇ · B = 0 Condition

The absence of magnetic monopoles is mathematically expressed by Gauss’
law for magnetism, i.e.,

∇ · B = 0 , (77)

which simply states that, for any control volume, the net magnetic flux across
the boundary is identically zero. In other words, magnetic fields do not have
sink or sources. The solenoidal condition is not an evolutionary equation
but, rather, a constraint to be fulfilled at all times. Indeed, if ∇ · B = 0
at some initial time, then by taking the divergence of Faraday’s law of
electromagnetism

∂B

∂t
+ ∇× Ω = 0 , (78)

one has ∂∇ · B/∂t = 0, i.e., the field is divergence-free at all times.
From a numerical point of view, however, this condition is fulfilled only at

the truncation level and non solenoidal components may be generated dur-
ing the evolution. This causes unphysical accelerations of the plasma in the
direction parallel to the field lines, as outlined by [4]. Generally speaking, it
is not possible for a numerical scheme to satisfy ∇ · B = 0 for any type of
discretization. Thus different method of solutions can be sought and the ro-
bustness of one strategy over another can be established on a practical base
by extensive numerical testing. In what follows, we give a rather concise de-
scription of the different approaches embraced up to now in Godunov type
schemes, and follow a two-category classification.

In the first one, a cell-centered representation of the magnetic field is used.
This naturally extends the formalism developed for the Euler equation of
gasdynamics to MHD and offers the advantage of being conceptually simple
and easy to implement in existing hydrocodes. Moreover, exploiting a cell-
centered representation of all conserved quantities makes the extension to
adaptive and unstructured grids straightforward.
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In the second class, the magnetic field has a staggered representation
whereby field components live on the face they are normal to. Hydrodynam-
ics variables (density, velocity, and pressure) retains their usual collocation at
the cell center. This provides a framework by which the induction equation
(78) is more naturally updated using Stoke’s theorem and the divergence-free
condition is fulfilled to machine accuracy, if ∇ · B = 0 initially.

4.1 Cell-Centered Methods

Powell’s 8-Wave Formulation

In the 8-wave formulation [36], Gauss’ law for magnetism is discarded in the
physical derivation of the MHD equations [37]. From the vector identity

∇× (v × B) = v (∇ · B) − B (∇ · v) + (v · ∇) B − (v · ∇) B , (79)

and the fact that ∇ · (vB) = (∇ · v)B + (v · ∇)B, one can re write Fraday’s
law as

∂B

∂t
+ ∇ · (vB − Bv) = −v (∇ · B) . (80)

Likewise, applying the same arguments to the momentum equation

∂(ρv)
∂t

+ ∇ · [ρvv + pgI] = j × B with j = ∇× B , (81)

and to the energy equation

∂

∂t

(
ρε + ρ

v2

2

)
+ ∇ ·

[(
ρε + pg + ρ

v2

2

)
v

]
= j · B , (82)

the divergence form of the equation takes the form [36, 37]

∂

∂t

⎛
⎜⎜⎜⎜⎜⎝

ρ

ρv

B

E

⎞
⎟⎟⎟⎟⎟⎠

+ ∇ ·

⎡
⎢⎢⎢⎢⎢⎣

ρv

ρvv − BB + pI

vB − Bv

(E + p) v − (v · B) B

⎤
⎥⎥⎥⎥⎥⎦

= −∇ · B

⎛
⎜⎜⎜⎜⎜⎝

0

B

v

v · B

⎞
⎟⎟⎟⎟⎟⎠

, (83)

where p = pg + B2/2 is the total (thermal + magnetic) pressure and E =
ρε + ρv2/2 + B2/2 is the total energy density.

Although the source term should be physically zero, Powell showed that its
inclusion changes the character of the equations by introducing an additional
eighth wave corresponding to the propagation of jumps in the component of
magnetic field normal (Bx) to a given interface. The other seven waves are
left unchanged from the traditional formulation, since it can be shown that
none of them carries a jump in Bx.
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The 8-wave formulation leads to a symmetrizable form of conservation laws
which, among other properties [20, 23], makes the system Galilean invariant.
This property does not hold anymore if the source term is dropped. Powell
also showed that the 8-wave formulation leads to the passive advection of
(∇ · B)/ρ. The latter property states that magnetic monopoles are advected
by the flow as they are created. However, ∇ · B = 0 is not satisfied in any
particular discretization, but only to truncation level.

Powell’s method has the advantage of being computationally inexpensive
and easy to implement without introducing significative complexities. Numer-
ical tests show that this modification, in any existing shock-capturing MHD
code, results in stable and robust schemes. On the other hand, the 8-wave for-
mulation leads to a non conservative form of the equations. Although Powell
claimed that deviations from the conservation should be very small, in [48]
Tóth proved that near discontinuities (shock waves) large conservation errors
may be produced.

Divergence Cleaning

In [12], the divergence free constraint is enforced by solving a modified system
of conservation laws, where the induction equation is coupled to a generalized
Lagrange multiplier. According to this modification, the induction equation
is replaced with

∂B

∂t
+ ∇ · (vB − Bv) + ∇ψ = 0 , (84)

and the solenoidal condition is expressed through

D(ψ) + ∇ · B = 0 , (85)

where D is a differential operator. For any choice of D, one can show that the
divergence of B and the scalar function ψ satisfy the same equation, namely

∂

∂t
D (∇ · B) −� (∇ · B) = 0 ⇐⇒ ∂D(ψ)

∂t
−�ψ = 0 . (86)

An elliptic correction results from taking D = 0. This is equivalent to the
projection method introduced by [4] and explained in the next section.

By taking D(ψ) = ψ/c2
p with cp > 0, one ends up with a parabolic correc-

tion. Simple manipulations show that, in this case, ψ can be trivially elimi-
nated from the equations and the induction equation becomes

∂B

∂t
+ ∇ · (vB − Bv) = c2

p∇ (∇ · B) , (87)

which states that local divergence errors are damped by an additional dissi-
pation mechanism, provided compatible boundary conditions are used.

A third, hyperbolic correction follows if D(ψ) = c−2
h ∂ψ/∂t is chosen, with

ch > 0. The hyperbolic correction propagates local divergence errors to the
boundary with the finite speed ch.
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Finally, a mixed hyperbolic/parabolic correction can be prescribed by
summing up the respective differential operators. The resulting divergence
constrain becomes

∂ψ

∂t
+ c2

h∇ · B = −c2
h

c2
p

ψ , (88)

offering both dissipation and propagation of divergence errors. In the mixed
formulation, divergence errors are transported to the domain boundaries with
the maximal admissible speed and are damped at the same time.

The main advantage of the approaches outlined above and, in particular of
the mixed formulation, is to preserve the full conservation form of the original
MHD system. Indeed, only the equation for the unphysical scalar function
ψ contains a source term. In addition, divergence errors are transported by
two waves with speeds independent of the fluid velocity. In this respect, this
procedure may be viewed as an extension of Powell’s divergence wave. Finally,
by taking advantage of operator splitting techniques, the equation for the
normal component of the magnetic field and ψ are decoupled from the other
equations. This allows for the solution of a 2 × 2 linear system of hyperbolic
equations, thus considerably reducing the computational effort.

Projection Scheme

The projection scheme, originally proposed by Brackbill and Barnes [4], con-
sists in applying a correction step to the magnetic field B∗ obtained after
the base scheme evolution (i.e., without any correction). In general, since
the base scheme will not preserve the divergence free condition, one can use
Helmholtz decomposition to resolve B∗ as the sum of an irrotational and a
solenoidal vector field, associated with scalar and vector potentials ϕ and A,
respectively:

B∗ = ∇ϕ + ∇× A . (89)

The physically relevant part of the field is the one associated with the vector
potential, i.e., ∇ × A. The correct divergence-free magnetic field is recov-
ered by subtracting the unphysical contribution coming from the irrotational
component, i.e.,

Bnew = B∗ −∇ϕ , (90)

after the Poisson equation
∇2ϕ = ∇ · B∗ , (91)

obtained by taking the divergence of Eq. (89), has been solved. As noticed by
Tóth [48], the difference operators approximating the divergence and gradi-
ent in Eqs. (90) and (91) must be consistently used to compute the Laplacian
operator in the Poisson equation. He also proved that the correction given
by Eq. (91) changes the solution from the base scheme B∗ to the clos-
est divergence-free discrete representation of the field, by introducing the
smallest possible correction. Furthermore, the method provides a consistent
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discretization without reducing the order of accuracy of the base scheme, even
in presence of discontinuities.

Of course, the price one has to pay is the solution of a Poisson equation
which can be rather expensive, especially on parallel computers or on adaptive
grids. Under many circumstances, however, it may not be necessary to solve
Eq. (91) to machine accuracy, and divergence errors may as well be kept below
some predefined tolerance, typically a small fraction of the |∇ · B∗| generated
in a single time step from the base scheme. This makes iterative solvers, like
the conjugate gradient type linear solvers [24, 49], particularly efficient and
flexible candidates to solve Eq. (91).

4.2 Constrained Transport

In the constrained transport method (CT henceforth), originally devised
by [17], the induction equation is discretized by adopting a staggered rep-
resentation of magnetic and electric vector fields. This formulation is better
understood by integrating Faraday’s law on a given surface S bounded by the
curve ∂S and using Stoke’s theorem to obtain a surface integration:

d

dt

∫

S

B · dS = −
∫

∂S

Ω · dl , (92)

where Ω is the electromotive force. In this form, the three components of
magnetic field are evolved on the zone face to which they are orthogonal and
are treated as surface averages, see Fig. 7. Each component has, therefore, a
different spatial collocation in the control volume. For a Cartesian cell with
lower and upper coordinate limits given by (x−, y−, z−) and (x+, y+, z+), the
surface averaged magnetic fields are

B̄±
x =

1
ΔyΔz

∫ ∫
Bx(x±, y, z) dydz , (93)

B̄±
y =

1
ΔxΔz

∫ ∫
By(x, y±, z) dxdz , (94)

B̄±
z =

1
ΔxΔy

∫ ∫
Bz(x, y, z±) dxdy , (95)

where the integrals extend from the lower to the upper bounds of the cell
and Δx = x+ − x−, Δy = y+ − y−, Δz = z+ − z− are the zone widths.
Note that the staggered collocation is perfectly consistent with the traditional
7-wave approach where the normal component of the field Bx is not allowed
to have a jump, while the tangential components certainly can. From this
perspective, Bx is regarded as a parameter when solving Riemann problems
at zone interfaces and does not need to be reconstructed from the cell center,
being already defined in the correct position. The discrete version of Eq. (92)
reduces to
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Fig. 7. Spatial collocation of flow variables in a 3D Cartesian cell. Cell-centered
quantities (circle) include density, pressure, and velocity. Magnetic fields (squares)
are face-centered, while electric fields (diamonds) are edge-centered

dB̄±
n

dt
= −

∑
m,l

εnml
ΔmΩ̃±

l

Δhm
, (96)

where {n,m, l} = x, y, z (Δhn = Δx,Δy,Δz) and ΔmΩ̃l is the difference
between the line-averaged electric field

Ω̃l =
1

Δhl

∫
Ωldhl , (97)

evaluated at opposite edges in the l-direction. In this formalism, one can verify
that the divergence-free condition in its integral form,

∑
n

B̄+
n − B̄−

n

Δhn
= 0 , (98)

is preserved to machine accuracy if the initial field has zero divergence in this
discretization.

Note that the electric fields, Eq. (97), are evaluated as line integrals along
the cell edges. This issue has been coped with in a number of different ways,
starting with the earlier work of [3, 10, 11, 43], who incorporated the CT
discretization in Godunov-type numerical schemes. Typical upwind schemes,
in fact, achieve second-order accuracy by interpolating cell-centered values to



Shock-Capturing Schemes in Computational MHD 97

the face midpoint and then solving a Riemann problem between the resulting
left and right states. Electric fields are thus available either at the cell center
by properly averaging velocity and magnetic vector fields [10, 11] or at the
face center using upwinded fluxes [3] from the induction equation. Therefore,
some kind of spatial interpolation is required to produce the edge-centered
electromotive force. In the original approach of [3], for instance, a simple
arithmetic averaging between the upwind fluxes coming the four faces adjacent
to a cell edge is adopted, see Fig. 8. In 2-D, for simplicity, the edge-centered
electric field Ω ≡ Ωz is produced as:

Ω̃i+ 1
2 ,j+ 1

2
=

Ω̂i+ 1
2 ,j + Ω̂i+ 1

2 ,j+1 + Ω̂i,j+ 1
2

+ Ω̂i+1,j+ 1
2

4
. (99)

where the Ω̂’s follow the solution of Riemann problems at the corresponding
interfaces. Despite its simplicity and effectiveness, the proposed average does

i, j+1 i+1, j+1

i+1, ji , j

Ωi+, j+1

Ω i+1, j+Ω i, j+

Ω i+, j

Fig. 8. Computation of the edge-centered electromotive force in 2D. The interpola-
tion process can proceed by either averaging the vector fields available at the center
(squares and dashed arrows) or the upwind fluxes available at zone interfaces (circles
and solid arrows). In the picture i+ = i + 1

2
, j+ = j + 1

2
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not reduce to the equivalent solver for plane-parallel grid aligned flow. This
failure can be traced back to the lack of a directional bias in the averaging
formula [19]. This issue has been addressed by a number of investigators, at
the same time offering alternative strategies to overcome this inconsistency.

In [29] and, more recently [30], this problem has been faced by noticing that
the flux components appearing in the induction equation are defined in terms
of point values at the intersections of cell faces, where different characteris-
tic wave fans may overlap. An appropriate average of these flux components
should follow a proper upwind selection rule, since a same flux component at
the same collocation point results to have two independent representations
in terms of characteristic wave fans. The resulting four-states combination
cannot be reduced simply to an interpolation or averaging form based on the
four cell-centered values of the arguments. Instead, specializing to the Ω ≡ Ωz

flux, a single-valued numerical flux comes out by averaging over the two over-
lapping x and y Riemann wave fans at the (xi+ 1

2
, yj+ 1

2
) edge. This entails

to a four-state flux function preserving the continuity and upwind properties
along each direction:

Ω̃ = 〈Ω〉 − φy + φx , (100)

where the first term 〈Ω〉 expresses the smooth contribution, whereas φx and
φy are the dissipative terms. For the HLL central-upwind scheme, for instance,
smooth and dissipative terms take the form

〈Ω〉 =
α+

x α+
y ΩLL + α+

x α−
y ΩLR + α−

x α+
y ΩRL + α−

x α−
y ΩRR

(α+
x + α−

x )(α+
y + α−

y )
, (101)

and

φx =
α+

x α−
x

α+
x + α−

x

(
BR

y,i+1,j+ 1
2
− BL

y,i,j+ 1
2

)
, (102)

φy =
α+

y α−
y

α+
y + α−

y

(
BR

x,i+ 1
2 ,j+1 − BL

x,i+ 1
2 ,j

)
, (103)

where left (L) and right (R) superscripts give the corresponding interpolated
point values with respect to the edge (i + 1

2 , j + 1
2 ), see Fig. 9. In Eqs. (101),

(102) and (103), α±
x and α±

y determine the opening of the x and y Riemann
fans, in terms of estimates to the maximum (+) and minimum (−) character-
istic velocities, respectively. Adopting the notations introduced in Eq. (29),
one may take, for example

α±
x = max

(
±λx

S,i+ 1
2 ,j ,±λx

S,i+ 1
2 ,j+1, 0

)
(104)

where S = R (S = L) for α+
x (α−

x ). Similar considerations hold for α±
y . The

constructed numerical flux is consistent with the fact that each component of
the induction equation, for a given velocity field and expressed in terms of the
vector potential A, has the form of a scalar Hamilton–Jacobi equation. This
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Fig. 9. Computation of the edge-centered electromotive force using the Up-
wind Constrained Transport (UCT) method of [30]. The four electric fields
ΩLL, ΩLR, ΩRL, and ΩRR are reconstructed from the cell centers using two-
dimensional interpolation. The edge-centered electromotive force comes by averaging
the two overlapping Riemann fan at i + 1

2
, j + 1

2

formalism has been successfully extended to special and general relativistic
flows in [13, 14].

A different, somewhat more empirical strategy is proposed by [19], where
the authors construct a more elaborate spatial integration procedure for the
electric field. The reconstruction rest upon an upwind selection rule depending
on the sign of the contact mode, in a way specifically designed to properly
control the amount of numerical dissipation.

In [51], the induction equation is modified by introducing an additional
term containing a mixed (space–time mixed) second derivative of the electric
field. The sign of this extra term is chosen to control the anti dissipative effect
arising from the equivalent modified equation.
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1 Introduction

The concept of instability is fundamental to the understanding of several
physical phenomena. As a very general definition, a system is unstable when-
ever a reaction to an external perturbation definitely modifies its structure
through energy transfer. In an astrophysical context, this may occur in very
different scenarios from the Earth’s ionosphere to the farthest extragalactic
objects. For example, solar flares or strong luminosity variabilities in compact
objects (e.g., pulsars and active galactic nuclei) can originate from the release,
through instabilities, of magnetic energy into particle acceleration. Moreover,
the formation of stars or galaxies may be related to the onset of gravitational
and radiative instabilities.

The Kelvin–Helmholtz Instability (KHI), that occurs at the interface be-
tween two fluids in relative motion, is one of the most important such pro-
cesses. The main properties of the KHI are quite well known since ≈ 150
years, but its application to astrophysical phenomena until ≈ 30 years ago
was quite limited. The KHI became a major argument of investigation for
the interpretation of the newly discovered extragalactic radio sources that ap-
peared as extended emitting structures symmetrically placed at tens of Kpc
from a galactic nucleus. It was shown that the energetic requirements of such
objects could be fulfilled assuming collimated jets connected the nucleus with
these blobs. The key question was whether these beams could reach the radio
lobes propagating through the environment safely against the onset of the
KHI. The discovery in the following years of collimated outflows in other var-
ious environments, from galactic objects (young stars, pulsars, etc.) down to
cometary tails interacting with the solar wind, attracted a lot of interest on
the problems concerning the origin, dynamics, and evolution of such struc-
tures. As an obvious consequence, the KHI became one of the most relevant
fields of activity in modern theoretical astrophysical research.

2 Definitions

Whenever a system is perturbed by an external disturbance, it can react by:
(i) oscillating around the initial configuration indefinitely; (ii) oscillating with
decreasing or (iii) increasing amplitude; (iv) monotonically moving away from
the initial configuration. In the former two cases, the system is stable, in the
(iii) is overstable, and in the (iv) it is unstable. It is clear that the configuration
evolves modifying definitely its structure in the last two cases (for which the
unique term instability is practically always used).

From a more physical point of view, we can investigate the stability of
a configuration through energetic arguments. Considering its total energy,
Etot = Epot + Ekin + · · · · = constant, a system is stable/unstable if a pertur-
bation increases/lowers its potential energy Epot.
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Restricting to the typical conditions of astrophysical plasmas, we can de-
fine in general two main kinds of unstable processes:
Microinstabilities (kinetic). They are strictly correlated with the distribution
function of the particles (e.g., non-Maxwellian). They are typical for space
physics (e.g., ionosphere), heating processes, and interaction between particles
and electromagnetic fields. They involve small scale lengths, with fast evolu-
tion with respect to the dynamical time scale of the system.
Macroinstabilities (fluid). They occur in configurations with an equilibrium
distribution function for the particles, for which the fluid approximation holds.
They are relevant whenever large scale phenomena are involved, with long
evolutive times comparable or slower than the dynamical time scale.

The KHI belongs to this last kind of instability; then we can analyze its
basic properties in the framework of a hydrodynamical and MHD treatment.

3 Equations and Mathematical Approach

The conservation of mass, magnetic flux, momentum, and energy, plus the
Ampère law provide the system of equations governing the dynamics of a
magnetized, ideal, and nonrelativistic flow with zeroth resistivity (ideal MHD
approximation):

∂ρ

∂t
+ ∇ · (ρv) = ∇ · B =

∂B
∂t

−∇× (v × B) = 0 (1)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p +

1
4π

(∇× B) × B − ρ∇Ψ (2)

(
∂

∂t
+ v · ∇

)
P − Γ

P

ρ

(
∂

∂t
+ v · ∇

)
ρ = (Γ − 1)Q (3)

where Γ is the ratio of specific heats, Ψ the gravitational potential, and Q the
volumetric rate of injection-minus-losses of energy in the plasma.

The standard method to treat such complex system (1), (2) and (3) is
to study the evolution of small amplitude disturbances that perturb an equi-
librium configuration (linear analysis). This is performed by expanding the
physical variables Qi as:

Qi = Q0,i + qi, qi � Q0,i (4)

where Q0,i are the zeroth order, equilibrium values. Substituting the above
relations in the original equations and neglecting all the terms O(q2

i ), we
obtain a linear system for qi, with coefficients functions of Q0,i.

To solve this linearized system, we can refer to the energy criterion quoted
in the previous section, looking for solutions that decrease the potential energy
of the system: if they exist the configuration is unstable. This approach is
suitable for complex structures; however, it does not provide information on
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the temporal growth rates of the instability. Furthermore, it does not work
whenever velocities or dissipative processes are present.

The alternative approach, widely adopted for astrophysical plasmas, is
more classical from the mathematical point of view: the perturbations are
assumed as eigenfunctions of the linearized equations (normal modes) that
must be solved fulfilling suitable boundary conditions. If the system is homo-
geneous, the eigenfunctions are the components of the Fourier expansion:

qi =
1
2π

∫
q∗i (k, ωk) exp[i(k · r − ωkt)]dk dωk (5)

and the system is solved for each of the components k, ωk. Considering that
∂/∂t = −iω and ∂/∂x1,2,3 = ikx1,2,3 (x1,2,3 are generic spatial coordinates)
from the linearized equations, we obtain the dispersion relation (DR):

D(k, ωk;Q0,i) = 0 (6)

Assuming k is real and ω = Re ω + iIm ω, the above DR provides ω(k);
for a fixed k the system is unstable if Im ω > 0. Considering the exponential
increase of perturbation amplitudes, Imω is the growth rate and ti ≈ 2π/Im ω
is the time scale of evolution of the instability.

If the system is inhomogeneous in one direction (e.g., x1), the perturba-
tions can be expressed as oscillating functions only in time and in the remain-
ing spatial components x2,3, namely qi ∝ f(x1) exp[i(kx2x2 + kx3x3 − ωkt)].
This means that a differential equation for f(x1) must be solved and that
ω(k) cannot be provided by a simple expression of the DR like (6).

Few main points and warnings about the linear analysis must be outlined:

1. We could assume eigenvalue k (complex) as function of ω (real), obtaining
the scale length of increase of instability: li ≈ 2π/|k|i (spatial analysis).
Usually a temporal analysis is adopted, as we will do here.

2. The normal modes of analysis may not provide all the solutions. In partic-
ular, even if Imω = 0 ,‘transient’ perturbations may be present that can
be found through a different mathematical treatment (e.g., using Laplace
transforms). Such solutions disappear on long times, however, could mod-
ify the equilibrium before damping.

3. When the instability is present, this does not necessarily means that the
configuration is destroyed. In fact its growth rate can be so small (i.e.,
the instability evolves very slowly with respect to the dynamical time)
to leave basically the system unaffected, which may be modified by other
physical processes. Furthermore, the instability can saturate leading the
system to a completely different but stable configuration. In more general,
the linear approach cannot provide information on the global evolution of
the instability; this can be obtained only by the complete solutions of (1),
(2) and (3). This can be performed through numerical simulations using
hydrodynamical codes that require advanced computing facilities. A lot
of effort have been made in the last two decades to develop more and
more sophisticated algorithms suitable for analyzing the global properties
of supersonic flows.
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In the following, we will discuss mainly the properties of the KHI in the
linear regime with a few examples of nonlinear evolution for simple cases.

4 KHI: Linear Analysis

The fundamental features of the KHI can be outlined for an adiabatic and
unmagnetized flow, without any gravitational field (Q = B = Ψ = 0). In such
a case, the system (1), (2) and (3) reduces to:

∂ρ

∂t
+ ∇ · (ρv) = 0 (7)

ρ
Dv
Dt

= −∇P,
DP

Dt
= −Γ

P

ρ

Dρ

Dt
(8)

with D/Dt = ∂/∂t + (v · ∇).
As equilibrium we will consider planar and cylindrical configurations. The

former one allows quite a simple but standard mathematical treatment of the
equations, while the second is more suitable for applications to astrophysical
collimated outflows.

4.1 Planar Vortex Sheet

In a Cartesian frame of reference x, y, z, we adopt a planar discontinuity in
the z, y plane (vortex sheet) separating two fluids in relative motion. The fluid
1, in the region x > 0, moves at constant velocity v1 = u0 z, while the fluid
2, in the region x < 0 , is at rest (v2 = 0; see Fig. 1). We displace along x the
vortex sheet by a small amount ξ perturbing all the physical quantities, see
(4) and (5):

P = P0 + p, ρ = ρ0 + μ, v = u0z + u (9)

p, μ, |u| ∝ g(x)ei(kzz+kyy−ωt) (10)

x

z

u0

Fluid 1

ξ

Fluid 2

Fig. 1. Equilibrium configuration of a planar vortex sheet (x = 0) separating two
fluids moving with velocity u0 along z for x > 0 and at rest for x < 0, respectively.
The vortex sheet is perturbed by a small displacement ξ along x
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with kz,y real and ω complex. If the system was homogeneous, it would be
g(x) = eikxx and from (7) and (8) we would simply obtain the DR for the
acoustic waves: ω = kzs (s =

√
ΓP0/ρ0 is the sound speed). In the present

case, conversely, we must solve the equations separately in the two fluids.
For simplicity, the same density is assumed across the vortex sheet and we
consider only perturbations propagating parallel to the velocity (ky = 0).
Fluid 1. Equations (7) and (8) reduce to:

iΩμ1 = −ρ0∇ · u1, iΩρ0u1 = −∇p1, p1 = s2μ1 (11)

where Ω = kzu0 − ω. From the 1st and 3rd of (11) we get:

∇ · u1 = −i
Ω

ρ0s2
p1 (12)

while taking the divergence of the 2nd equation and considering that ∇2 =
d2/d2x − k2

z , we end up with:

d2p1

dx2
=
(

k2
z − Ω2

s2

)
p1 (13)

which has solutions:

p1 = A1eq1x, q1 = ±
(

k2
z − Ω2

s2

)1/2

(14)

where A1 and the sign of q1 are still undetermined.
Fluid 2. Assuming u0 = 0 and Ω → −ω, and following the same steps as
before we obtain the solutions:

p2 = A2eq2x, q2 = ±
(

k2
z − ω2

s2

)1/2

(15)

The constants A1 and A2 can be eliminated considering the x components of
the momentum equation in the two fluids, the 2nd of (11):

iΩρ0ux1 = −q1p1, iωρ0ux2 = q2p2 (16)

and assuming pressure equilibrium across the vortex sheet (x = 0):

Ωux1

ωux2
= −q1

q2
(17)

Through the perturbed displacement of the vortex sheet ξ(z, t)x (common for
the two fluids), we can now eliminate ux1,2 considering that ux1 = iΩξ and
ux2 = −iωξ, and obtain the DR:

D(kz, ω;u0; s2) ≡ Ω2q2 − ω2q1 = 0 (18)

The signs of q1 and q2 depend on the solution itself and on the boundary
conditions, and we have two possible choices:
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(a) If ω is real the system is stable: the sign must be selected such that the
perturbations are outgoing traveling waves to avoid a source of energy at
infinity (Sommerfield conditions).

(b) If ω is complex or imaginary the system is unstable: then the sign must be
consistent with the amplitude of the perturbations vanishing for x → ±∞.

Solutions of the DR

To solve the DR, it is convenient to deal with nondimensional variables; ac-
cordingly we define:

Φ ≡ Re Φ + iIm Φ =
ω

kzs
, M =

u0

s
(19)

where M is the Mach number. The time scale of the instability is then given
by ti = 2π/kzs Im Φ.

By squaring (18), the DR reduces to a 6th polynomial that can be easily
solved. However in this way spurious roots are introduced and it must be
verified that each solution fulfills the original DR (18). It turns out that of all
the 6 roots of the polynomial just these are acceptable:

Φ =
M

2
± i

[
(M2 + 1)1/2 −

(
M2

4
+ 1
)]1/2

(20)

Φ =
M

2
, M > 2 (21)

The only unstable solution is (20) with the sign ‘+’, and its main properties,
as function of the Mach number, are the following (see Fig. 2):
M � 1. For largely subsonic velocities, corresponding to the incompressible
regime, (20) reduces simply to:

Φ =
M

2
(1 ± i) (22)

which means that the vortex sheet is always unstable against the KHI, and
the growth rate linearly increases with the velocity. We notice further that
the phase velocity of the perturbations (= u0/2) is just the Doppler shift;
then in a system with the two fluids moving at relative velocities ±u0/2 the
amplitude of the modes is monotonically increasing (these are true unstable,
and not overstable modes; see Sect. 2).
M>∼ 1. Also a transonic flow is always unstable but the increase of ImΦ with
M is slower; it reaches a maximum at M ≈ 1.7 and then decreases.
M � 1. For M >

√
8 the two roots of (20) become real (ImΦ = 0) with the

perturbations transforming into two traveling sound waves: highly supersonic
flows are always stable. However, it is possible to see that the reflection and
transmission coefficients of these waves across the vortex sheet can diverge
in particular conditions. This means that these perturbations are marginally
stable.
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Fig. 2. Plot of the nondimensional growth rate Im Φ vs M of a perturbation propa-
gating along the fluid velocity for a vortex sheet configuration, and for unmagnetized
and magnetized flows (labels are different values of vA/s)

Transverse Propagation, Fluid Densities, and Magnetic Field

We shortly summarize how the KHI properties are modified when some of the
above simplifying assumptions are released.

If the modes do not propagate along the velocity direction (ky �= 0), the
previous mathematical results are nonmodified provided that M → Meq =

Mkz/
√

k2
z + k2

y and Φ → ω/
(
s
√

k2
z + k2

y

)
. From these new definitions, it ap-

pears evident that the onset of the KHI does not depend on the full velocity
but depend on its component along the direction of propagation of the per-
turbation. By increasing ky, we move towards the incompressible regime (for
ky � kz is Meq � 1): highly supersonic flows may be unstable against oblique
disturbances, but the growth rate vanishes for kz → 0, and modes propagating
parallel to u0 are stable as they do not feel any velocity jump.

The general features of the KHI also do not change if there is a contrast of
density across the vortex sheet. The growth rate of the instability decreases by
a factor ∝

√
ρ02/ρ01 (ρ02 < ρ01), and the stability cut off for highly supersonic

flows is always present.
When the magnetic field is included, B = B0 + b �= 0, the linearization

process refers now to the full MHD system (1), (2), and (3) but the procedure
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to get the DR is the same as in the hydrodynamical case: now the DR is a
polynomial of 10th degree. The effect of B on the development of the KHI
strictly depends on its geometry. When the velocity and magnetic field are
perpendicular the features of the instability are basically unmodified if we
redefine the Mach number as u0/

√
s2 + v2

A, where vA is the Alfvèn velocity
(= B0/

√
4πρ0). Conversely, the magnetic field has a stabilizing effect when it

is along the flow speed (see Fig. 2). For parallel propagation of modes (ky = 0)
and for M ≤ 2vA/s it is Im Φ = 0, i.e. subsonic magnetized flows are stable.
Moreover, the supersonic cut off decreases: M =

√
8 → 2, and for vA/s ≥ 1

the two cut off coincide: highly magnetized flows are always stable against the
KHI (for ky �= 0 hold the previous considerations on oblique mode propagation
with M → Meq).

4.2 Shear Layer

It is clear from the first term of (19) that the growth rate diverges for modes
with vanishing wavelengths (ti → 0 for kz → ∞); this is related to the lack
of any typical scale length in the equilibrium configuration. From the mathe-
matical point of view, this means that the KHI is an ‘ill posed’ problem in the
case of vortex sheet; this is removed if we introduce a continuous transition
of velocity across the two fluids.

Now the mathematical approach is different: working out the linearized
system with the same geometry as for the vortex sheet (velocity parallel to z
and varying along x), we obtain a unique differential equation that governs
the evolution of the perturbations in the whole system:

d2p

dx2
+ g(x,M,M ′;Φ, kza)

dp

dx
+ f(x,M,M ′;Φ, kza)p = 0 (23)

where g and f are general functions (the unmagnetized case has been consid-
ered) and a is the scale length of variation of the Mach number (a = M/M ′,
M ′ = dM/dx). As we are dealing with an ideal flow, the shape of M(x)
is a free function; in general the transition is assumed from purely linear,
M(x) ∝ (x−x0)/a, to smoother profiles, M(x) ∝ tanh[(x−x0)/a]. With this
assumption (23) is integrated searching those values of the eigenvalue Φ that
allow to fulfill the boundary conditions for the eigenfunction, i.e. p → 0 for
x → ±∞.

The properties of the solutions depend on the interplay between M and
kza. In subsonic and transonic flows, M <∼ 1−1.5, the large wavelength modes
(kza � 1) are basically unaffected by the shear layer with respect to the vortex
sheet configuration. Conversely, perturbations with wavelengths comparable
to or shorter than the transition scale length (kza >∼ 1) are stabilized, almost
independently on the velocity profile (Fig. 3, left panel).

The behavior of the KHI is more complex for supersonic speeds. Modes
with kza >∼ 1 tend always to be damped while the stability cut off found
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Fig. 3. Planar shear layer. Plot of Im Φ vs kza for three values of the Mach number
and different transition profiles from linear (dotted) to more and more smoothed
for decreasing labels (label ‘1’ refers to the ‘tanh’ profile). Left panel: Stabilizing
effect of the shear layer in a transonic flow (M = 1) by increasing kza. Right panels:
Stabilizing effect in supersonic flows (upper panel, M = 3; lower panel, M = 5) of
the wavenumber kza on the destabilized modes which are overstable in the limit of
the supersonic vortex sheet (M >

√
8)

for M >
√

8 disappears (Fig. 3, right panels). In fact the behavior with
the Mach number is quite peculiar: for M > 2 the solution given by (21)
becomes unstable, and for M ≈

√
8 it merges with the overstable modes

that are now destabilized by the shear (it turns out from the phase velocity,
Re Φ, that these are traveling, i.e., overstable perturbations). Then highly
supersonic flows can always be unstable (even though with much lower growth
rates than in the vortex sheet case), but this strictly depends on the shape
of the velocity transition. For linear profiles, a highly supersonic shear layer
is never stabilized, however, large are M and kza. Conversely, for smoother
transitions, an upper cut off value of kza is found for the instability, but always
for M >

√
8. In the opposite limit of vanishing layer, kza → 0, we converge

to the vortex sheet configuration: Im Φ → 0 and these modes degenerate into
the overstable perturbations.
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4.3 Cylindrical Geometry

The DR is obtained following an analogous method as in the planar case. The
equilibrium configuration is a jet of infinite length and radius a, with axis and
constant velocity along z (cylindrical coordinates r, φ, and z are adopted)
and separated by the external unmoving environment by a discontinuity. The
modes are chosen as:

p, μ, |u| ∝ g(r)ei(kz+nφ−ωt) (24)

where the azimuthal number n defines the symmetry of the perturbations.
For n = 0, n = 1, and n > 1, we have the axisymmetric pinching, helical, and
fluting modes, respectively (see Fig. 4).

From the linearized system (7) and (8), we now obtain two Bessel equa-
tions of order n for the perturbed pressures pi,e inside and outside the jet.
These equations are solved considering suitable boundary conditions: pi must
be regular on the axis, while the amplitude of pe must vanish for r → ∞. Ac-
cordingly, for a perturbation of azimuthal number n, the solutions for r < a

and r > a are given by the Bessel, Jn, and Hankel, H
(1)
n , functions, respec-

tively. Matching the two solutions on the jet boundary (r = a), we obtain the
following DR:

Fig. 4. Projection of the cross sectional area of a cylinder showing different kinds
of perturbations: pinching (n = 0), helical (n = 1), and fluting (n > 1)
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ν(Φ − M)2Δe
H

′(1)
n (kaΔe)

H
(1)
n (kaΔe)

− Φ2Δi
J ′

n(kaΔi)
Jn(kaΔi)

= 0 (25)

Δ2
i = (Φ − M)2 − 1, Δ2

e = (Φ2 − ν)/ν (26)

where primes indicate derivatives with respect to the argument and ν the
ratio of the beam to external densities (for ν > 1 or < 1, we have a ’dense’ or
‘light’ jet, respectively).

Considering the asymptotic expansions of the Bessel and Hankel functions,
we can have expressions of the DR much simpler than (25). For very long
wavelengths, kaΔi,e/n � 1, the DR for helical and fluting modes (n > 0)
reduces to:

ν(Φ − M)2 = −Φ2 → Φ = νM
1 ± i/

√
ν

1 + ν
(27)

which is the same expression found for a subsonic planar vortex sheet across
equal fluids [ν = 1, see (22)]. This relation implies that these axisymmetric
perturbations are always unstable without any stability cut off for supersonic
speeds. The growth rate for very light (ν � 1) or very dense jets (ν � 1)
decreases as ν1/2 or ν−1/2, respectively: as in the planar vortex sheet the
fastest growing KHI occurs in beams moving through environments with sim-
ilar densities.

In the opposite case of very short wavelengths, kaΔi,e/n � 1, (25)
becomes:

exp
[
2i

(
kaΔi −

2n − N + 1
4

π

)]
=

1 + F1(Φ)
1 + F2(Φ)

(28)

where F1 and F2 are regular analytic functions and N ≥ 0. It is clear from the
form of (28) that various solutions are possible for the same set of parameters:
a completely different behavior with respect to the planar vortex sheet.

The numerical solution of (25) confirms these asymptotic properties, as
shown in Figs. 5 and 6, where we plot ImΦ against M and ka for pinching
and helical perturbations, respectively (these patterns are not strongly mod-
ified for n > 1). It turns out that two main kinds of unstable perturbations
are present in a cylindrical beam. The so-called ordinary, or surface modes
are the equivalent of the unstable mode of a planar vortex sheet, with the am-
plitude exponentially decreasing moving away from the jet surface. However,
the geometry introduces two main differences: there is any stability cut off
for supersonic speeds, whichever is the value of ka and M ; and for small ka
and M we find ImΦ(n = 0) � Im Φ(n > 0). For long wavelength asymmetric
modes, the growth rate becomes the one given by (27).

For M > 2 and not extremely long wavelengths, a new series of modes are
found mixed with the ordinary perturbation and with growth rates basically
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Fig. 5. Plot of Im Φ vs M for pinching modes of short wavelength (n = 0, ka = 10).
The dotted line represents the planar vortex sheet limit. With OM and RM, we
label ordinary and reflected modes, respectively (only the first four RM are plotted)

independent of n [the DR for these kind of perturbations with short wave-
lengths is given by (28)]. As for the new mode found in a supersonic planar
shear (Sect. 4.2), this instability is related to the overstable perturbations
found in the limit of a vortex sheet with M >

√
8. These disturbances in

some conditions can have multiple reflections on the cylinder wall leading to
instability. The properties of these modes (called reflected) are strictly related
to the wavenumber and the Mach number, and the main consequence is that
collimated outflows are always unstable (see Figs. 5 and 6).

If a magnetic field is included, its effect depends on the geometry of B: as
a reasonable configuration it is generally assumed a longitudinal component
inside (B0,z �= 0 for r < a) and a toroidal component outside the jet (B0,φ �=
0 for r > a). As in the planar case, a magnetic field along the beam axis
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Fig. 6. Plot of Im Φ and Re Φ vs ka for helical modes in a highly supersonic jet
(n = 1, M = 10). With OM and RM, we label ordinary and reflected modes,
respectively (only the first four RM are plotted)

stabilizes the KHI, mainly in slow jets and for long wavelength ordinary modes.
An azimuthal magnetic field has conversely an opposite trend enhancing the
instability, and this is expected as a typical property of magnetized cylindrical
equilibria. It is well that for nonmoving MHD cylindrical configurations (u0 =
0) B0,φ triggers the onset of the well known sausage (n = 0) and kink (n =
1) unstable modes that can be stabilized by a strong enough longitudinal
magnetic field.

4.4 KHI: Physical Properties

We have outlined the general properties of the KHI, mainly from the math-
ematical point of view; now we address to the simple question: what is the
physical mechanism that drives the instability process?
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Lets consider the perturbed planar vortex sheet separating the two flows
as shown in Fig. 1. When we slightly displace this surface by ξ, a pressure
unbalance is created across the boundary due to the centrifugal force acting
on the flow moving along the corrugated sheet. The strength of this unbalance
grows with the perturbation amplitude as ξ ∝ dp/dx, then once perturbed, the
system moves indefinitely away from the initial configuration. If a shear layer
is introduced between the two fluids, the coherence between the amplitude and
the pressure gradient is lost for perturbations with wavelength comparable or
smaller than the scale length of the velocity variation. The modes with ka>∼ 1
are then stabilized. It is also clear the stabilizing effect of a magnetic field
parallel to the flow direction: the fieldlines act as rigid ‘wires’ that counteract
the deformation of the discontinuity.

The physical origin of unstable, reflected perturbations, sometimes also
called ‘negative energy’ modes is completely different. We have seen that in
supersonic jets overstable modes in some conditions can have multiple reflec-
tions on the jet boundary. There, they can resonantly couple with external
acoustic waves that travel away from the jet surface subtracting energy from
the internal beam that reacts to this loss of energy becoming unstable. A
similar resonant process occurs in a planar shear layer. The different nature
of the reflected modes is clear: they are not perturbation localized near the
velocity transition (as ordinary modes), but true acoustic waves propagate
inside and far outside the beam. If a magnetic field is considered, it is possible
to see that reflected modes are associated with fast magnetosonic waves (also
slow magnetosonic waves can be unstable for some values of the parameters,
but they have always very low growth rates).

All previous considerations hold in the framework of an ideal, classical
and, adiabatic MHD treatment, but more general physical scenarios could be
assumed in an astrophysical context. In such a case, new kinds of instabilities
can arise that mix and interact with the KHI, as in the case of flute and
sausage instabilities for a magnetized, nonmoving cylinder that we quoted at
the end of Sect. 4.3. If in (2) ∇Ψ �= 0 the configuration may undergo Rayleigh–
Taylor and Jeans instabilities, while heating and radiative losses, Q �= 0 in
(3), lead to the onset of radiative instabilities.

We discuss in more detail the properties of the KHI in relativistic regime,
that is typical in several astrophysical phenomena.

Relativistic Flows

The conservation laws in (2) and (3) in the special relativistic ideal hydrody-
namics regime become:

γ

(
∂

∂t
+ v · ∇

)
ρ + w

[
∂γ

∂t
+ ∇ · (γv)

]
= 0 (29)

γ2w

(
∂

∂t
+ v · ∇

)
v = −∇P − v

c2

∂P

∂t
, Pρ−Γ

r = constant (30)
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where γ =
√

1 − β2 (β = |v|/c) is the bulk Lorentz factor, w = ρ + p/c2 the
enthalpy, ρr = m0n the rest mass density (with m0 and n the particle rest mass
and number density in the fluid rest frame, respectively), and ρ = ρr(1+e/c2)
is the relativistic density (with e the specific internal energy). The sound
speed is defined as s2 = ΓP/w, and the relation between P and e is given by
P = (Γ − 1)eρr. In plasmas with ultrarelativistic temperatures, ρ � ρr, the
adiabatic relation modifies as P ∝ ρ5/3 →∝ n4/3, which is just the second
of (30) with Γ = 4/3; then for the sound speed we have s = c/

√
3 and the

classical Mach number has the upper limit M ≤
√

3 (for mildly relativistic
temperatures, the equation of state is very complicated).

Linearizing (29) and (30) following the same procedure as in previous
Sects. 4.1 and 4.3, we obtain DR which are similar to (18) and (25) for planar
and cylindrical geometries, respectively.

Referring to cylindrical beams, more interesting in an astrophysical con-
text, (25) and (26) now become (Δe does not change):

γ2ν(Φ − M)2Δe
H

′(1)
n (kaΔe)

H
(1)
n (kaΔe)

− Φ2Δi
J ′

n(kaΔi)
Jn(kaΔi)

= 0 (31)

Δ2
i = γ2

[
(Φ − M)2 −

(
1 − β2

M
Φ

)]
, ν = wi/we (32)

Now the DR depends on the bulk Lorentz factor and the ratio of the inner
and outer enthalpies (instead of the densities). Then we can have different
‘relativistic regimes’: (i) a cold flow (ρ → ρr) moving at highly relativistic
velocities (γ � 1), (ii) a hot beam (ρ � ρr) with low velocity (γ ≈ 1), and
(iii) a hot, highly relativistic jet (ρ � ρr, γ � 1).

We can easily obtain information on the relativistic effects, unstable long
wavelength helical and fluting ordinary perturbations, in which case the DR
is simply given by [see (27) for the classical case]:

γ2ν(Φ − M)2 = −Φ2 → Φ = γ2νM
1 ± i/γ

√
ν

1 + γ2ν
(33)

In highly relativistic regime (γ � 1 and/or ν � 1), ImΦ ∝ (γ
√

ν)−1, which
means that these unstable perturbations are damped in hot or cold relativis-
tic jets. Numerical solutions of (31) confirm this trend also for intermediate
wavelengths, including pinching modes: when the jet velocity c and/or its
temperature is very high, ρ � ρr, the larger inertia of the plasma contrasts
the growth of the amplitude of perturbations in the transition boundary.

The behavior of the reflected modes is more complex, in which case the
instability is related to the resonant coupling of acoustic waves at the jet
surface. Now the wavelength of the perturbations inside the beam are affected
by the relativistic velocity, and it turns out from the solutions of (31) that
reflected modes with smaller wavenumbers are destabilized for the velocity
approaching the speed of light. In particular, by increasing γ the pattern of
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the perturbations shown in Fig. 6 is shifted to smaller values of ka with almost
unchanged values of ImΦ. The final consequence is a decrease of the physical
growth rate, then also reflected modes are damped in ultrarelativistic jets.

5 KHI: Nonlinear Evolution

The linear analysis of the fluid and MHD equations allowed one to investigate
the main physical conditions for the onset of the KHI in different contexts.
However, a general view on the global evolution of the unstable system re-
quires the direct treatment of the Eqs. (1), (2), and (3), and this is performed
only through hydrodynamical and MHD simulations using advanced numeri-
cal codes. We present, in the following, the main properties of the nonlinear
evolution of the KHI in the simplest cases of a planar layer and a cylindrical
beam. The numerical results have been obtained using, for the simulations,
a hydrodynamical code based on the Piecewise Parabolic Method algorithm
(PPM; we do not discuss here the basic principles of different numerical codes,
that can be found in other chapters of this book).

5.1 Shear Layer

In a discretized domain, a planar vortex sheet is approximated by a layer with
thickness equal to the size of the smallest grid point. However, the KHI in this
case is an ‘ill posed’ problem (see Sect. 4.2), then we expect that numerical
noise with dimension comparable with these small grids would sharply increase
leading to unphysical spurious solutions. To avoid this effect, we assume, for
the initial equilibrium, a configuration similar to that discussed in Sect. 4.2: a
homogeneous flow in pressure equilibrium with velocity along the x axis and
with a ‘tanh’ profile in the y direction: vx(y) = v0tanh[(y − y0)/a]. The total
jump of velocity is 2v0 and a is the scale length of the transition shear. In this
way, all the rapidly increasing, small size disturbances are damped.

This configuration is perturbed assuming a transversal sinusoidal velocity
with small amplitude, exponentially decaying moving away from the shear
layer:

uy(x, y) = ε sin(2πx/λ) e−[2π(y−y0)/λ], ε � v0 (34)

The spatial coordinates are given in units of half wavelength of the perturba-
tion, and the temporal coordinate in units of the time elapsed to cross a unit
length moving at the sound speed (dynamical time). The simulations have
been performed for transonic (M = 1) and supersonic velocities (M = 3),
assuming free boundary conditions far from the layer and periodic boundary
conditions along the flow.

For transonic velocities the perturbation evolves as predicted by the linear
theory for few dynamical times, then its amplitude stops its growth, and a
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new permanent equilibrium is attained. The final configuration has a cat’s
eye structure: a vortex shape with a minimum density inside and the pressure
and centrifugal force balancing on the wall, with no energy outflow from the
central region (Figs. 7 and 8, upper panels). The number of vortices depends
on the wavelengths of the perturbation: for short wavelengths several vortices
grow that merge forming a final unique steady structure. A spatial Fourier
analysis shows that only one scale is present in the velocity field comparable
with the size of the domain.

For supersonic velocities, the perturbations are overstable modes desta-
bilized by the shear, then their evolution is completely different. We see in
Figs. 7 and 8 (lower panels) that the central density oscillates with increasing
amplitude while outgoing waves originate from the layer that, after some dy-
namical times, evolve into shock waves with increasing strength. This behavior
implies that a spectrum of structures with different scale lengths are present
in the system as deduced from the spatial Fourier analysis. The evolution is
slower for transonic velocities as expected from the lower growth rate found
from the linear analysis; however, no asymptotic configuration is attained and
the energy is indefinitely carried away from the layer.

y

y

x

x

Fig. 7. Two-dimensional maps of the density distribution for a sheared ‘tanh’ flow
with M = 1 at t = 6.1 (upper panel) and M = 3 at t = 12.1 (lower panel). Dark
zones indicate low density regions; the arrows represent the velocity field, initially
parallel to the x axis
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Fig. 8. Plot of t vs the density at the center of the shear layer for M = 1 (upper
panel) and M = 3 (lower panel). The solid line for the transonic case represents the
evolution expected from the linear theory

5.2 Cylindrical Jet

To simulate the evolution of a jet against the KHI, we assume the same
equilibrium configuration as in Sect. 4.3, including a velocity and density
profile across the beam and external medium given by:

vz(r) = v0/cosh[(r/a)m] ρ(r) = ν − ν/cosh[(r/a)m] (35)

where m is related to the steepness of the transition of the variables across
the sheared surface and ν is the density contrast between the center of the jet
and outer environment: ν > 1 or ν < 1 for light or dense beams, respectively
(this definition of ν is the opposite of that adopted in Sect. 4.3).



124 E. Trussoni

For the perturbations, we assume a more general form than in the case of
planar shear. As we have seen, several unstable modes are present in highly
supersonic jets. In this case, a discrete spectrum of perturbations is more suit-
able to simulate the nonlinear evolution of the KHI. Limiting our discussion
to axisymmetric pinching disturbances (n = 0), it has been assumed for the
transverse perturbed velocity:

ur(r, z) = ε/n0 Σn0
1 sin(nk0z)e−[(r−a)/δ]2 , ε � v0 (36)

The longest wavelength is equal to the longitudinal length D of the computa-
tional domain (k0 = 2π/D) while the choice of smallest wavelength (n0k0) is
limited by the grid resolution. Furthermore, it has been assumed that the am-
plitude of the modes exponentially decay on a scale δ transverse to the beam
surface. We have adopted periodic boundary conditions on the left and right
side of the domain (z = 0 and z = D), symmetric or anti symmetric bound-
ary conditions on the jets axis (r = 0), and free conditions on the opposite
boundary, far from the beam (r � a).

The evolution of the instability is discussed for a dense, highly supersonic
jet (M = 20, ν = 0.3) and a light, slower jet (M = 5, ν = 3). For the
parameters of the perturbations appearing in (36), we have assumed in both
cases m = 8, δ = 0.2 and n0 = 12, i.e., 12 unstable modes are overimposed on
the beam (see Fig. 9).

The simulations show that the KHI develops following these three main
phases.

(1) Linear. The amplitudes of the modes increase as predicted by their growth
rate obtained from the linear study: the prevailing scale corresponds to
the perturbation with the largest growth rate (see Fig. 10).

(2) Expansion. The prevailing perturbation transforms into internal shocks:
they heat the intra shock region that expands but remain well separated
from the outer medium.

(3) Mixing. The shocks evolve leading to mixing with entrainment of the exter-
nal medium inside and outwards diffusion of the jet gas: as a consequence
the velocity shear widens and the density contrast between the jet and
the environment decreases. The prevailing scale in this phase corresponds
to the unstable mode with the longest wavelength (see Fig. 10).

The temporal intervals between these phases and the final configurations
strongly depend on the jet parameters. For dense and highly supersonic jets
the evolution is quite fast and full mixing with the external medium is attained
at t ≈ 17 (see Fig. 11). As a result the velocity shear widens but still maintains
a coherent collimated pattern: a complete disruption of the jet may occur but
on quite long time scales. In highly supersonic but light jets, the expansion
is larger and they appear very well separated from the external medium for
long times, with the mixing occurring much later than in dense beams. The
opposite trend is found in slower jets (see Fig. 12): the surface is less inflated
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Fig. 9. Plot of Im Φ vs ka for a pinching perturbations (n = 0), and M = 20,
ν = 0.3 (dense jet, upper panel), and M = 5, ν = 3 (light jet, lower panel). Only
the ordinary and the first two reflected modes are shown. The dotted vertical bars
indicate the values of ka assumed in the initial perturbations (36)

but more deeply deformed (unstable modes have shorter wavelengths), with
the consequent final and almost complete disruption of the beam. In partic-
ular, the mixing phase begins at t = 19, and for t ≥ 25 strong vortices are
formed and the flow is basically completely decelerated.

In conclusion, the KHI deeply affects the structure of supersonic cylin-
drical beams and has two main effects: the formation of transverse shocks,
with consequent strong heating of the plasma, and the mixing of external and
beams matter with the onset of peculiar structures and morphologies, and the
(earlier or later) final disruption of the collimated beam. These basic prop-
erties qualitatively hold even if more complex configurations are considered,
including 3-D geometry, magnetic field, and relativistic velocities.
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6 Conclusions

It is evident from previous discussions how many astrophysical phenomena
may be related to the evolution KHI. For example, the different morphologies
observed in extragalactic jets (wiggles, knots, etc.) are very likely related to
internal shocks and entrainment processes that are strictly related to the KHI.
Then the instability may play a major role in dissipative processes of the bulk
kinetic energy of the jet that are different in different classes of extragalactic
objects (e.g., high and low power radio galaxies). Also the radiative properties
of jets are related to the KHI: in fact relativistic particles may be accelerated
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Fig. 11. Maps, for three different values of t, of the density profile (dark: high
density regions) and of the velocity fields for M = 20 and ν = 3 (dense jet)

by a Fermi I process in shocks and by Fermi II interaction with the MHD
turbulence fed by the fast evolution of unstable modes with short wavelength.
A similar scenario holds also in stellar jets, where the diagnostic of the plasma
properties is much easier. Spectroscopic observations of the knots confirm that
these are shocks, providing information on the plasma conditions (tempera-
ture, density, and velocity), that can be used to constrain the parameters
in the numerical simulations in order to consistently reproduce the observed
phenomenology.

Efforts to improve the numerical codes and the computing facilities for a
more sophisticated analysis of the instability are ongoing. Different physical
ingredients (3-D, magnetic fields, and relativistic velocities) as well as ‘com-
panion’ zeroth order effects (gravity, general relativity, radiative losses, large
scale inhomogeneities, etc.) are being considered.
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Fig. 12. The same as in Fig. 11 for a light jet (M = 5, ν = 0.3)

Since the historical papers by Von Helmholtz and Lord Kelvin [1, 2], nu-
merous papers have been published on the various properties of the KHI: The
summary of the fundamental principles may be found in some classical text-
books as Chandrasekhar and Drazin & Reid [3, 4]. The beam model of Rees [5]
on radio galaxies extended the interest of the KHI to an astrophysical context
with the stability studies of by Blandford and Pringle and Turland and Sheuer
[6, 7]. The first numerical simulations on the nonlinear evolution of the KHI
were carried on by Hardee and Norman [8, 9]. In the following decades tens of
papers have been published on this argument of research, where classical and
relativistic flows were considered including magnetic fields and shear layers.
When the astrophysical application of the KHI was extended to stellar jets,
other effects had to be considered, e.g., radiative losses [10, 11]. A summary
and a discussion of the main results (with references therein) can be found in
[12, 13, 14].
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Concerning in particular the arguments presented here, details on the sta-
bility of a planar vortex sheet (Sect. 4.1) are found in [15, 16], while the effects
of a shear layer (Sect. 4.2) are discussed in [17, 18, 19, 20]. For the stability of
cylindrical jets (Sect. 4.3), we can refer mainly to [21, 22, 23, 24, 25], while the
properties of relativistic plasmas (Sect. 4.4) are discussed in the textbooks of
Synge and Landau and Lifshitz [26, 27]. Concerning the nonlinear evolution
of the KHI presented in Sect. 5, more details are reported in [28, 29].

I wish to conclude by remarking that, in spite of the detailed and sophisti-
cated numerical solutions obtained in these last years regarding jet dynamics
and evolution, linear studies of the KHI have been very recently reconsidered,
mainly concerning the KHI properties in magnetized, relativistic regime [14,
30, 31, 32, 33].
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In these notes, I review the present status of this open problem for pressure-
driven instabilities, one of the two major sources of ideal MHD instability in static
columns (the other one being current-driven instabilities).

I first discuss in a heuristic way the origin of these instabilities. Magnetic reso-
nances and magnetic shear are introduced, and their role in pressure-driven instabil-
ities discussed in relation to Suydam’s criterion. A dispersion relation is derived for
pressure-driven modes in the limit of large azimuthal magnetic fields, which gives
back the two criteria derived by Kadomtsev for this instability. The growth rates of
these instabilities are expected to be short in comparison with the jet propagation
time.

What is known about the potential stabilizing role of the axial velocity of jets is
then reviewed. In particular, a nonlinear stabilization mechanism recently identified
in the fusion literature is discussed.

Keywords Ideal MHD: stability · pressure-driven modes · Jets: stability

1 Introduction

The enormous distances over which astrophysical jets propagate without los-
ing their coherence certainly constitute one of the most striking features of
these objects. Typically, jets from Young Stellar Objects (YSOs) do reach out
to a few parsecs, while the radial extent of their region of origin appears to
be smaller than ∼ 100 A.U, making jets extremely elongated structures.

Blandford and Rees [3] already pointed out, in their 1974 pioneering work,
that in laboratory experiments, jets do not propagate much farther than
about ten times their radii, which makes the propagation lengths of astro-
physical jets all the more impressive. The simplest way out of this conun-
drum would be to assume that jets are ballistic. Indeed, for YSO jets at
least, the observed opening angle (∼ 5◦) is consistent with the idea that
they freely expand when one compares their thermal and bulk velocities.
However, this option leaves open the issue of the formation of such powerful
jets in the first place. In addition, as critically, the ballistic hypothesis does
not explain how these jets survive the development of the Kelvin–Helmholtz
instability, which is now known to be quite disruptive in purely hydrodynamic
jets [4] [5].

The shortcomings of the simple ballistic picture certainly motivated the
elaboration of MHD jet models to some extent. Such models, however, are also
prone to instabilities. The most important ones discussed in the literature can
be grouped into three categories:

• MHD Kelvin–Helmholtz instability. As for its HD counterpart, the driving
agent is the velocity gradient at the jet/external medium interface. This
instability has received a lot of attention in the literature, as the largest
source of free energy in a jet is its bulk motion.

• Conversely, the presence of a magnetic field provides a source of instability
even in the absence of bulk motion. Ideal MHD instabilities are commonly
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divided into current- and pressure-driven according to the driving factor
(equilibrium parallel current in the first case and gas pressure versus field-
line curvature in the second).

• Radiative instabilities related to the coupling of the radiation field and of
the plasma dynamical quantities.

The structure of jets is not precisely known, which is one of the difficulties
in analyzing their stability. Most stability analyses assume that jets can be
described as some sort of cylindrical column in motion, pervaded by a mag-
netic field. Self-collimated jet models are not exactly cylindrical, but as the
observed opening angles are small, the assumption of cylindrical shape is not
expected to be a major limitation.

More critically, such jet models have a helical field structure with the
azimuthal component of the magnetic field dominating over the vertical one
in the outer jet regions. This follows in most models because the magnetic
tension is the confining force ensuring self-collimation. Static MHD columns
(i.e., not subject to the bulk motion characterizing MHD jets) pervaded by
a helical magnetic field are referred to as “screw pinches” in the fusion liter-
ature. It is also known in this context that the dominance of the azimuthal
field component leads to both types of MHD instabilities mentioned above
and may cause the disruption of the plasma column itself on a few dynamical
time-scales. This has long been an argument against magnetically self-confined
jet models. However, recent investigations indicate that a bulk motion can
play an important stabilizing role (see Sect. 5). Conversely, the presence of a
magnetic field can help stabilizing the Kelvin–Helmholtz modes [20]. These re-
cent advances seem to indicate that a sophisticated equilibrium jet structure is
required if one is to understand jet stability properties, a state of development
not yet reached by the subject, but that now appears to be within sight.

To conclude these introductory remarks, I would like to point out that,
in the nonlinear phase, an instability can have three broad types of outcome:
(i) disruption of the fluid configuration (in the case, at hand, of the jet as a
jet); (ii) internal reorganization, the flow becoming laminar again in the end;
and (iii) turbulence (with or without internal reorganization of the structure).
The most prominent objective of the study of jet stability is to understand how
the first issue is avoided in real jets; this issue may well be seen as our inability
to formulate the initial value problem correctly. A second but important issue
is to understand how turbulence might be driven by jet destabilization. This
issue is probably more important in AGN than in YSO jets, as turbulence
is often invoked in the former context as a source of high energy particle
acceleration.

The object of these lecture notes is pressure-driven instabilities. As most
investigations of this problem have been made in the fusion context for static
columns, this essential aspect of the subject will first be reviewed before briefly
presenting the more recent (and more scant) results on moving columns. The
next section presents some general ideas about the physical origin of MHD
instabilities; the concept of magnetic shear is introduced there as well, and its
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stabilizing role on pressure-driven instabilities, expressed by Suydam criterion,
is discussed. Section 3 introduces the Lagrangian form of the perturbation
equations used in static columns, as this formulation is the most powerful
to derive general results, such as those derived from the Energy Principle
presented in Sect. 4. Section 5 presents the dispersion relation of pressure-
driven instabilities in low magnetic shear that are expected to characterize
jet’s outer regions. The few published results on moving columns (i.e., jets) are
presented in Sect. 6. The last section summarizes the present state of under-
standing of this aspect of jet stability and outlines areas where improvement
is needed.

Sections 2 and 6 are intended for a general audience, while Sects. 3, 4
and 5 are more theoretical in nature. The exposition is aimed at the graduate
student level.

2 Heuristic Description of MHD Instabilities

This first section is intended to provide the reader with some qualitative and
semi-quantitative ideas about the onset and characteristics of pressure-driven
instabilities, leaving technical aspects of the stability analysis to the later
sections.

2.1 Qualitative Conditions of Ideal MHD Instabilities
in Static Equilibria

The equilibrium configurations leading to an ideal MHD instability have been
well investigated in the fusion literature. For current-driven instabilities, the
first criterion was devised by Kruskal and Shafranov. Basically, it states that,
in cylindrical column of length L, instability follows if the magnetic field line
rotates more than a certain number of times around the cylinder from end to
end. The exact number of rotations required for instability is dependent on
the considered equilibrium configuration; it is usually of order unity.

Concerning pressure-driven instabilities, a more clear-cut necessary con-
dition of instability can be stated: instability follows once the pressure force
pushes the plasma outwards from the inside of the field line curvature. This
condition can be derived from the Energy Principle, as will be shown later on.

These conditions of onset of instability are illustrated on Fig. 1. In an
actual plasma, the origin of an instability (current- or pressure-driven) is
usually not easy to pinpoint except in special instances. For example, if the
plasma is cold (no pressure force), the instability is necessarily current-driven.
Also the growth rates of current-driven modes are known to decrease with
spatial order – e.g., they decrease with increasing azimuthal wavenumber m –
while the most unstable pressure-driven modes have a growth rate which is
nearly independent on the wavenumber. Consequently, large wave, number
unstable modes are therefore always pressure-driven in a static, ideal MHD
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Fig. 1. Qualitative description of the conditions of onset of MHD instabilities (see
text for details)

column. Besides these two limiting cases, an MHD instability almost always
results from an inseparable mix of pressure and current driving. If the column
is moving, the distinction between Kelvin–Helmholtz, current- and pressure
modes is even more blurred, except in some cases, where branches of instability
can be identified by taking appropriate limits.

In terms of outcome of the instability, it is essential to know whether
unstable modes are internal or external, i.e., they have vanishing or substantial
displacement on the plasma surface (here, the jet surface). It is well known
in the fusion context that unstable external modes are prone to disrupt the
plasma, as may be the case, e.g., with the m = 1 (“kink”) current-driven mode.

In the next sections, mostly high wavenumber modes will be examined,
where the pressure driving is most obvious, in order to best identify the char-
acteristic features of this type of instability.

2.2 Magnetic Shear, Magnetic Resonances,
and Suydam’s Criterion

The concept of magnetic shear plays an important role in the understanding
of the stability of pressure-driven mode. The magnetic shear characterizes the
change of orientation of field lines when moving perpendicularly to magnetic
surfaces. In the case of cylindrical equilibria, this concept is illustrated on
Fig. 2. Magnetic surfaces are cylindrical. Field lines within magnetic surfaces
have a helix shape; the change of helix pitch rBz/Bθ characterizes the mag-
netic shear. A quantity related to the pitch and largely used in the fusion
community is the safety factor q:

q =
rBz

RoBθ
, (1)

where Ro is the column radius. For reasons to be discussed later, a high enough
safety factor is required for stability, hence its name. The magnetic shear s is
defined as

s ≡ r

q

dq

dr
. (2)
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Fig. 2. The change in the pitch of field lines between magnetic surfaces is the source
of the magnetic shear (see text)

Magnetic resonances constitute another important key to the question of
stability. A cylindrically symmetric equilibrium is invariant in the vertical and
azimuthal direction, so that perturbations from equilibrium can, without loss
of generality, be expanded in Fourier terms in these directions and assumed
to be proportional to exp i(mθ + kz). Magnetic resonances are the (cylindri-
cal) surfaces where the wavevector k = m/reθ + kez is perpendicular to the
equilibrium magnetic field:

k · Bo

Bo
≡ k‖ =

1
Bo

(m

r
Bθ + kBz

)
= 0 (3)

where k‖ is the component of the wavevector parallel to the equilibrium mag-
netic field. The significance of these surfaces stems from the fact that, in
general, dispersion relations incorporate a stabilizing piece of the form V 2

Ak2
‖,

where VA is the Alfvén speed. This term is responsible for the propagation of
Alfvén waves and arises from the restoring force due to the magnetic tension
(see Sect. 5 for the precise meaning of these statements). As such, it is always
stabilizing. Obviously, this stabilization is minimal in the vicinity of a mag-
netic resonance for a given (m, k) mode, so that pressure-driven instabilities
are preferentially triggered at magnetic resonances for any given mode.

Note, however, that a large magnetic shear limits the role of magnetic reso-
nances in the destabilization of the plasma. Indeed, defining the perpendicular
wavenumber

k⊥ = − 1
Bo

(m

r
Bz − kBθ

)
, (4)

and designating by rc, the radial position of the magnetic resonance of the
(m, k) mode, one finds that

k‖ � BθBz

B2
o

k⊥s
r − rc

rc
, (5)
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to first order in (r − rc)/rc in the vicinity of the magnetic resonance rc. This
implies that VAk‖ will remain small either if s � 1 (small shear) or if the mag-
netic field is mostly perpendicular (|Bθ| � |Bz|) or azimuthal (|Bz| � |Bθ|) so
that |BθBz|/B2

o � 1. However, if the field is predominantly vertical, it is lit-
tle curved, and pressure destabilization is expected to be weak or nonexistent
according to the description of the condition on instability depicted in Fig. 1;
furthermore, s being a logarithmic derivative is usually of order unity. There-
fore, in practice, stabilization by magnetic tension will be reduced essentially
when the field is mostly azimuthal.

These features are embodied in Suydam criterion, which expresses a suffi-
cient condition for instability:

B2
z

8μor
s2 +

dP

dr
> 0. (6)

The converse of this statement is a necessary condition for stability. The origin
of this criterion is briefly discussed in Sect. 4. It turns out that this condition
is both a necessary and sufficient condition of instability for large wavenumber
modes [10]. The condition of instability requires dP/dr < 0, which agrees with
our heuristic description of the onset of instability given above. It will also
be discussed in Sect. 4 that the growth rates γ of pressure-driven instabilities
are γ∼CS/Ro (CS is the sound speed and Ro the jet radius).

Coming back to Eq. (6), the first term is stabilizing, but the stabilization
will be minimal in the condition just discussed, i.e., when the field is mostly
azimuthal. Indeed, in this case, the equilibrium condition Eq. (11) implies
that dP/dr∼B2

θ/μor�B2
z/r ∼ B2

zs2/r. This situation is expected to hold in
magnetically self-confined jet’s outer regions. Indeed, most such jet models
(e.g., [19] and [11]) have |Bθ| � |Bz| in the asymptotic jet regime to ensure
confinement. This feature combined to the previous statement that MHD
instabilities involving the boundary are most prone to disrupt static MHD
columns makes the assessment of the role of pressure-driven instabilities in
MHD jets particularly critical for the viability of such models. This viability
hinges on the hopefully stabilizing role of the jet bulk motion (see Sect. 6).

3 Ideal MHD in Static Columns

The simplest framework, in which the stability of jets can be investigated,
is ideal magnetohydrodynamics (MHD). Justifications and limitations of this
approach are briefly discussed in Appendix A.

3.1 Equations

The MHD equations used in these notes are the continuity equation, the
momentum equation without the viscous term, the induction equation without
the resistive term, and a polytropic equation of state. Incompressibility is
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not assumed, as pressure-driven modes are not incompressible except at the
marginal stability limit. These equations read

∂ρ

∂t
+ ∇ρv = 0, (7)

∂v

∂t
+ v · ∇ · v = −∇PT

ρ
+

B · ∇B

μoρ
, (8)

∂B

∂t
= ∇× (v × B), (9)

P = Kργ , (10)

with standard notations, where PT = P + B2/2μo is the total (gas and mag-
netic) pressure, K a constant, and γ is the polytropic index.

3.2 Equilibrium

Using a cylindrical coordinate system (r, θ, z), a static (v = 0) cylindrical
column of axis z is described by a helical magnetic field Bθ(r), Bz(r), and a
gas pressure P (r) depending only on the cylindrical radius r. The continuity
and induction equations as well as the vertical and azimuthal component of the
momentum equation are then trivially satisfied, while the radial component
reduces to

− dPT

dr
− B2

θ

μor
= 0. (11)

This cylindrical equilibrium is best characterized by introducing a number
of quantities homogeneous to an inverse length, both in vectorial (KB, KP

and KC) or algebraic form (KB , KP and KC). They are defined by:

KB ≡ ∇Bo

Bo
=

1
Bo

dBo

dr
er ≡ KBer, (12)

KP ≡ ∇Po

Po
=

1
Po

dPo

dr
er ≡ KP er, (13)

KC ≡ e‖ · ∇e‖ = − B2
θ

rB2
o

er ≡ KCer. (14)

where Bo and Po are the equilibrium distribution of magnetic field and gas
pressure, and e‖ = Bo/Bo is the unit vector parallel to the magnetic field; KC

is the curvature vector of the magnetic field lines, and KB characterizes the
inverse of the spatial scale of variation of the magnetic field, while KP char-
acterizes the inverse scale of variation of the fluid pressure. The first identity
in these relations is general, whereas the second one pertains to cylindrical
equilibria only.
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It is also convenient to introduce the plasma β parameter:

β ≡ 2μoPo

B2
o

, (15)

This parameter measures the relative importance of the gas and magnetic
pressures.

With these definitions, the jet force equilibrium relation reads

β

2
KP = (KC −KB) , (16)

Both forms of the equilibrium relation, Eqs. (11) and (16), express the
fact that the hoop stress due to the magnetic tension (KC) balances the gas
(KP ) and magnetic (KB) pressure gradient to achieve equilibrium and confine
the plasma in the column. Self-confinement is achieved in this way when the
external pressure is negligible at the column boundary.

3.3 Perturbations

We want to investigate the stability with respect to deviations from equi-
librium. As the background equilibrium is static, the problem is most easily
formulated and analyzed in Lagrangian form: indeed, in this case, all equa-
tions but the momentum equation can be integrated with respect to time.
To this effect, we introduce, for any fluid particle at position ro in the ab-
sence of perturbation, the displacement ξ(ro, t) at time t from its unperturbed
position, so that its actual position is given by

r(ro, t) = ro + ξ(ro, t). (17)

The unperturbed position ro is used to uniquely label all fluid elements.
Denoting by δX, the (Lagrangian) variation during the displacement of any

quantity X, the linearized (Eulerian) equation of continuity ∂tδρ = −∇(ρov)
integrates into1

δρ = −∇(ρoξ). (18)

Similarly, the linearized induction equation ∂tδB = ∇× (Bo ×v) leads to

δB = ∇× (Bo × ξ). (19)

From these results and the polytropic equation of state, the total pressure
variation reads

1 In these expressions, the difference between the Eulerian and Lagrangian vari-
ations has been ignored as they disappear to first order in the displacement ξ
in the final equations. For the same reason, no distinction is made between the
derivative with respect to r or ro.
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δPT = −ξ · ∇Po − γPo∇ · ξ +
Bo · δB

μo
. (20)

For static equilibria, one can, without loss of generality, take a Fourier
transform of the linearized momentum equation with respect to time. For a
given Fourier mode, one can write ξ(r, t) = ξ(r) exp iωt, so that the linearized
momentum equation becomes

− ρoω
2ξ = −∇δPT + δT ≡ F (ξ), (21)

where δT = (Bo.∇B + B.∇Bo)/μo represents the variation of the magnetic
tension force.2 The last identity in Eq. (21) defines the linear operator F ,
operating on ξ through Eqs. (19) and (20).

4 The Energy Principle and Its Consequences

The linear operator F of Eq. (21) is self-adjoint, i.e., taking into account that
F is real: ∫

η · F(ξ)d3r =
∫

ξ · F(η)d3r. (22)

A demonstration of this relation can be found, e.g., in Freidberg [12] (cf p. 242
and Appendix A of the book).

As a consequence of this property of F , an Energy Principle can be for-
mulated. Defining

δW (ξ∗, ξ) = −1
2

∫
ξ∗ · F(ξ)d3r, (23)

and
K(ξ∗, ξ) =

1
2

∫
ρ|ξ|2d3r, (24)

and taking the scalar product of Eq. (21) with ξ∗ leads to

ω2 =
δW

K
. (25)

The self-adjointness of F has two important consequences (Energy Principle):

1. ω2 is also extremum with respect to a variation of ξ.
2. Stability follows if and only if δW > 0 for all possible ξ.

Ascertaining stability through the last statement is usually an impossible
task. Instead, one usually makes use of the Energy Principle in a less ambi-
tious manner: if one can find some displacement making δW < 0 then one
has a sufficient condition of instability (or, taking the converse statement,
a necessary condition of stability). This is actually how Suydam criterion is

2 Within a factor ρo.
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demonstrated. First the expression of δW is simplified by taking advantage of
the cylindrical geometry and focusing on marginal stability and incompress-
ible displacements (as they make δW more easily negative; see below). Next,
one chooses a particular form of displacement in the vicinity of the magnetic
resonance of an (m, k) mode, and looks under which conditions this displace-
ment makes δW negative; the condition turns out to be Suydam criterion for
a well-chosen displacement. These computations are rather lengthy and the
reader is referred to Freidberg’s book [12] for details.

A useful form3 of δW has been derived by Bernstein et al. [2], which reads
(see Freidberg [12], p. 259)

δW =
1
2

∫
d3r

[
|Q⊥|2

μo
+

B2
o

μo
|∇ · ξ⊥ + 2KC · ξ⊥|2 + γPo|∇ · ξ|2

− 2Po(KP · ξ⊥)(KC · ξ∗
⊥) − J‖(ξ∗

⊥ × e‖) · Q⊥
]
, (26)

where ξ⊥ is the component of the displacement perpendicular to the
unperturbed field B, Q⊥ = ∇×(ξ⊥×Bo) is the perturbation in the magnetic
field, KC is the curvature vector of the magnetic field, and KP is the inverse
pressure length-scale vector defined earlier; J‖ and e‖ are the current and unit
vector parallel to the magnetic field, respectively. The quantities KP and KC

are defined in Eqs. (13) and (14).
The first term describes the field line bending energy; it is the term respon-

sible for the propagation of Alfvén waves, through the restoring effect of the
magnetic tension, which makes field lines acting somewhat like a rubber band.
The second term is the energy in the field compression, while the third is the
energy in the plasma compression. The fourth term arises from the perpendic-
ular current (as ∇P = J⊥×B in a static equilibrium), and the last one arises
from the parallel current J‖. Only these two terms can be negative and give
rise to an instability if they are large enough to make ω2 < 0. Pressure-driven
instabilities are driven by the first of these two terms, while current-driven
instabilities are due to the second one. Pressure-driven instabilities are further
subdivided into interchange and ballooning modes, depending on the shape of
the perturbation, but the basic properties of these different modes are similar,
and this distinction will not be discussed further in these notes.4

For our purposes here, we are mostly interested in what can be learned
from the form of the fourth term. First note that this term is destabilizing in
cylindrical geometry when KCKP > 0; this justifies the necessary condition
of instability given in Sect 2.1. Furthermore, Eqs. (25) and (26) imply that
the pressure-driving term produces an inverse growth rate γ, of the order of
magnitude

|γ|2 ∼ C2
SKCKP ∼ C2

S/R2
o, (27)

3 The boundary term is ignored, as it is not required in this discussion.
4 In particular, Suydam criterion applies also to ballooning mode in cylindrical

geometry; see Freidberg’s book [12], pp. 401–402 for details.
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where CS is the sound speed and Ro the column radius. This is quite fast,
comparable to the Kelvin–Helmholtz growth rate in YSO jets. This order of
magnitude will be used in the next section to set up an ordering leading to
analytically tractable dispersion relations for pressure-driven unstable modes.

5 Dispersion Relation in the Large Azimuthal
Field Limit

Most of the general results on pressure-driven instabilities were obtained in
the fusion literature either from the use of the Energy Principle or from the
so-called Hain-Lüst equation (a reduced perturbation equation for the radial
displacement [15] [13]). These approaches are quite powerful but not familiar
to the astrophysics community, and involve a lot of prerequisite.

It is more common in astrophysics to grasp the properties of an instability
through the derivation of a dispersion relation. There are actually two papers
doing this in the jet context for pressure-driven instabilities; however, the
first one, by Begelman [1], focuses on the relativistic regime which brings a
lot of added complexity to the discussion, and the second one [17] is partially
erroneous.

Fortunately, in the limit of a near toroidal field of interest here, a disper-
sion relation can be derived ab initio by elementary means, and this approach
is adopted here. To this effect, it is first useful to reexamine the behavior of the
three MHD modes in an homogeneous medium, in the limit of quasiperpendic-
ular propagation. It is known that this limit allows the use of a kind of WKB
type of approach in the study of interchange and ballooning pressure-driven
modes (see, e.g., Dewar and Glasser [9]), a feature we shall take advantage of
in these notes.

5.1 MHD Waves in Quasi-perpendicular Propagation
in Homogeneous Media

We consider an homogeneous medium pervaded by a constant magnetic field
Bo. The analysis of linear perturbations in such a setting leads to the well-
known dispersion relation of the slow and fast magnetosonic modes and the
Alfvén mode. Our purpose here is to point out useful features of these modes
when the wavevector is nearly perpendicular to the unperturbed magnetic
field.

To this effect, let us consider plane wave solutions to Eq. (21), where
ξ ∝ exp(−ik · r), and assume that the direction of propagation is nearly
perpendicular to the magnetic field, i.e., k‖ � k⊥ (defined in Eqs. (5) and
(4)). The focus on quasi perpendicular propagation comes from the remarks
of Sect. 2.2, where it was noted that instability is easier to achieve in the
vicinity of magnetic resonances, i.e., where k‖ � k⊥.
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Fig. 3. Definition of the reference frame (e‖, el, eA)

Let us also introduce the orthogonal reference frame (e‖, el, eA) where
e‖ ≡ Bo/Bo is parallel to the unperturbed magnetic field, el ≡ k⊥/k⊥, and
eA ≡ e‖ × el (see Fig. 3). With our definition of k‖ and k⊥ in Eqs. (5) and
(4), eA = er. The subscripts l and A stand for longitudinal and Alfvénic,
respectively (e‖, el, and eA are the directions of the displacement of purely
slow, fast and Alfvénic modes in the limit of nearly transverse propagation
adopted here, as shown below).

Denoting (ξ‖, ξl, ξA) the components of the lagrangian displacement ξ in
this reference frame, the momentum equation Eq. (21) yields the following
three component equations

(
ω2 − C2

S k2
‖

)
ξ‖ = C2

S k‖ k⊥ ξl, (28)

(
ω2 − C2

S k2
⊥ − V 2

A k2
)

ξl = C2
S k‖ k⊥ ξ‖, (29)

(
ω2 − V 2

A k2
‖

)
ξA = 0, (30)

while the total pressure perturbation becomes

δPT = −iρo

[
(C2

S + V 2
A) k⊥ξl + C2

S k‖ξ‖
]
. (31)

Equation (30) gives the dispersion relation of Alfvén waves, ω2
A = V 2

Ak2
‖,

which decouple from the two magnetosonic modes described by the remaining
two equations. The solutions of the magnetosonic modes are easily derived and
possess the following important properties. Characterizing quasiperpendicular
propagation with the small parameter ε ≡ |k‖/k⊥| � 1, these two equations
imply ω2

S � C2
SV 2

A/(C2
S + V 2

A)k2
‖ and ξl ∼ O(εξ‖) for the slow magnetosonic

wave, while ω2
F � (C2

S +V 2
A)k2

⊥ and ξ‖ ∼ O(εξl) for the fast magnetosonic one.
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Furthermore, the ξl momentum component Eq. (29) combined with Eq. (30)
and the ordering of the displacement component just pointed out implies that
δPT = 0 to leading order in ε for the slow magnetosonic mode; note that
the same property holds by construction for the Alfvén mode. The cancella-
tion of the total pressure for these two modes is essential from a technical
point of view, and will lead to substantial simplification in the derivation of
a dispersion relation performed in the next subsection.

5.2 Dispersion Relation and Kadomtsev Criteria

Let us now come back to cylindrical inhomogeneous equilibria. Remember
from Sect. 4 that the pressure-driving term will contribute a destabilizing term
ω2 ∼ C2

S/R2
o to the dispersion relation. This term will be able overcome the

stabilizing effect of the restoring forces of the Alfvén and slow magnetosonic
modes only if VA|k‖|, CS |k‖| � CS/Ro. This constraint can be achieved in
the vicinity of magnetic resonance as previously noted.

More precisely, a simplified dispersion relation can be found in the WKB
limit with a displacement of the form ξ(r) = ξ × exp−i(krr + mθ + kzz), if
the following ordering is satisfied:

• |k‖r| � or � 1 � |krr| � |k⊥r|: The first inequality ensures that the
stabilization by magnetic tension is ineffective (closeness to a resonance).
The following inequalities ensure that a WKB limit can be taken. The
implied ordering5 |k‖| � k⊥ ensures that δP ∗ will vanish to leading order
as in the homogeneous case discussed in the previous section. The last
inequality allows us to neglect the contribution of the radial gradient of
total pressure (which does not vanish), and greatly simplifies the analysis.

• |Bz/Bθ|2s2|k⊥| � |k‖|: This limit, which applies when |Bθ| � |Bz|, en-
sures that the magnetic shear is not stabilizing.

• |ω2| � |ωF |2: This excludes the fast mode from the problem in the near
perpendicular propagation regime considered here. As the fast mode is not
expected to be destabilized in this regime (as |ω2

F | � V 2
A/r2), this does

not limit the generality of the results while simplifying the analysis.

It turns out that the resulting dispersion relation captures most of the
physics of pressure-driven instabilities; this follows because the most unstable
modes have growth rates nearly independent of the azimuthal wavenumber
m [10], and because the current-driven instabilities are efficient only at low m
and disappear from a WKB analysis.

As previously, the projection Eq. (21) on the longitudinal direction el

shows that the total pressure perturbation vanishes and that ξl ∼ |k‖/k⊥|ξ‖ �
ξ‖), while the components in the other two directions (e‖,er) are now coupled

5 For consistency with the previous sections, k⊥ is the wavenumber in the longitu-
dinal direction; it does not include the piece in the radial direction.
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and read (some details of the derivation of these equations can be found in
Appendix B) (

ω2 − V 2
SMk2

‖

)
= −i

2β∗

1 + β∗V 2
AKCk‖ξr, (32)

[
ω2 − V 2

A(k2
‖ + k2

o)
]

= i
2β∗

1 + β∗ V 2
AKCk‖ξ‖, (33)

where β∗ = C2
S/V 2

A, and V 2
SM = C2

SV 2
A/(C2

S + V 2
A) is the slow mode speed

in the near perpendicular propagation limit. The coupling of the modes blurs
their character except in limiting cases.

The quantity k2
o is defined as

k2
o =

4β∗

1 + β∗K
2
C − 2β∗KCKρ. (34)

Note that if KC = 0 (i.e., when reverting to an homogeneous medium),
Eqs. (32) and (33) yield back the slow and Alfvén mode, respectively. The
field curvature couples the two modes. The quantity k2

o can be either positive
or negative; the first term in Eq. (34) comes from the plasma compression and
the second one is the contribution of the pressure destabilizing term identified
in Sect. 4.

As usual, these equations possess a nontrivial solution if their determinant
is non zero, which yields the following dispersion for ω2:

ω4 −
[
(V 2

A + V 2
SM )k2

‖ + V 2
Ak2

o

]
ω2 + V 2

AV 2
SMk2

‖(k
2
‖ − 2β∗KCKρ) = 0. (35)

First note that if both Bz = 0 (the so-called Z-pinch configurations) and
m = 0, this equation is degenerate: one of the roots is ω2 = 0 and the other
root is ω2 = V 2

Ak2
o . Instability then requires that k2

o < 0, as k‖ = 0 in this
case. This constrain is identical to the criterion6 derived by Kadomtsev from
the Energy Principle for the m = 0 mode in Z pinches (see Freidberg [12],
p. 286).

When m �= 0, Eq. (35) can be solved exactly but it is more instructive
to analyze its properties. As the coefficient of ω2 is equal to the sum of the
two roots, and the last term is equal to their product, one finds that if k2

‖ >

2β∗KCKρ, the two roots are stable, and if k2
‖ < 2β∗KCKρ, one of the roots

is unstable. If Bz = 0 (Z pinch), this condition is identical to the criterion7

derived by Kadomtsev for m �= 0 modes (see Freidberg [12] pp. 284–285).

6 Kadomtsev’s criterion for the m = 0 mode in a Z pinch is a necessary and suffi-
cient condition of instability, whereas the analysis presented here shows only the
sufficiency of this condition.

7 Same comment as in the previous footnote.
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Note that all these conditions of instability require KCKP > 0, in agree-
ment with the discussion of Sects. 2 and 4; this condition is unavoidable in
magnetically self-confined jets. The analysis presented here also shows that
once this condition is satisfied, instability necessarily follows in static columns
where |Bθ| � |Bz| on some of the radial range, as the magnetic tension stabi-
lizing effect V 2

Ak2
‖ is arbitrarily small in the vicinity of a magnetic resonance.

Finally, the reader may ask how the local analysis presented here informs
us on the global stability properties of the column. The answer lies in the
oscillation theorem of Goedbloed and Sakanaka [14]. The theorem states that
for any (m, k) unstable mode, the growth rate decreases when increasing the
number of radial nodes. This implies that if an unstable mode with a large
number of radial nodes is found (such as the modes considered here), an
unstable nodeless mode will also exist, and this mode will have the largest
growth rate. Such a mode will have a very disruptive effect on the plasma if
its displacement is not vanishing on the boundary, as will be the case if the
azimuthal field is dominant on the boundary.

6 Moving Columns

The previous section has shown that cylindrical columns with a predominant
azimuthal magnetic field at least in some radial range are subject to pressure-
driven instabilities. This situation holds in the outer region of self-confined
magnetic jets, leading to a potentially disruptive configuration. However, in
these regions a gradient of axial velocity due to the interaction of the moving
jet with the outside medium is also expected to be present, and it is legitimate
to investigate the effect of such a velocity gradient on the stability properties
of pressure-driven modes.

This problem has not yet been addressed in the astrophysics literature, but
some relevant results are available in the fusion literature. In all the investi-
gations cited below, the adopted velocity profile contains no inflexion point,
in order to avoid the triggering of the Kelvin–Helmhotz instability.

It is first useful to consider what becomes of Suydam criterion in the
presence of background motions.8 This investigation has been performed by
Bondeson et al. [6]. Focusing on axial flows (U = Uz(r)er), they conclude
that the behavior of localized modes depends on the magnitude of

M ≡ ρ1/2 U ′
z

q′Bz/q
, (36)

where the prime denotes radial derivative, and q is the safety factor (see
Sect. 3). This quantity is a form of Alfvénic Mach number based on the velocity

8 This requires a generalization of Eq. (21); also, the Energy Principle no longer
applies as the resulting operator is not self-adjoint.
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and magnetic shear, hence its name. When M2 < β, the flow shear destabilizes
resonant modes. Above this limit, these modes are stable, but in this case,
unstable modes exist at the edge of the slow continuum, and may be global.
The authors found, however, that in this case the growth rates are small
(comparable to the resistive instabilities growth rates). Note also that, as
q′/q ∼ 1/r, M ∼ (Bφ/Bz)(r/d)(Uz/VA) � 1 in MHD jets (d is the width of
the velocity layer).

These results seem to suggest that the region where the velocity shear layer
takes place at the jet boundary is substantially stabilized in MHD jets. This
seems to be confirmed by global linear stability analyses, both for interchange
and ballooning modes, except possibly for the m = 0 (“saussage”) mode [7]
[23] [24]. In all cases, increase of the flow Mach number efficiently reduces the
amplitude of the displacement of the unstable modes at the plasma boundary,
an important feature to avoid the disruption of the plasma.

An efficient stabilization mechanism has also been identified in the nonlin-
ear regime by Hassam [16]. This author exploits an analogy between the m = 0
pressure-driven interchange mode and the Rayleigh–Taylor instability in an
appropriately chosen magnetized plasma configuration. From this analysis, he
concludes that the m = 0 pressure-driven mode is nonlinearly stabilized by
a smooth velocity shear (dUz/dr ∼ U/Ro) if Ms = Uz/CS � [ln(τd/τg)]1/2,
where τg is the instability growth time-scale (τg ∼ cs(KρKC)1/2) and τd the
diffusion time-scale (τd ∼ νKρKC where ν is the viscosity, assumed compara-
ble to the resistivity). The nonlinear evolution of an unstable, slightly viscous,
and resistive Z-pinch (i.e., a configuration where the field is purely azimuthal),
was simulated by Desouza-Machado et al. [8]. They found that the plasma re-
laminarizes over almost all its volume for applied a velocity shear in good
agreement with this analytic estimate. The core of the plasma still has some
residual unstable “wobble”, which can apparently be stabilized by the mag-
netic shear if some longitudinal field Bz is added to the configuration. Note
that the large values of τd/τg relevant to astrophysical jets lead to only weak
constraints9 on the Mach number Ms, so that this nonlinear stabilization
mechanism is expected to be efficient in astrophysical jets.

7 Summary and Open Issues

Pressure-driven instabilities occur in static columns when the pressure force
pushes the plasma out from the inside of the magnetic field lines curvature, as
shown from direct inspection of the “potential energy” of the linearized dis-
placement equation (Sect. 4), and from a the dispersion relation of local modes
(Sect. 5). When unstable modes exist, the growth rates are of the order CS/Ro

9 For example τd/τg = 1030 translates into Ms � 8 only; in YSO jets, this ratio is
most probably significantly smaller, and the constraint is even weaker.
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where CS is the sound speed and Ro the jet radius. These are very large, com-
parable to the Kelvin–Helmholtz growth rate (the most studied instability in
jets), especially that the ratio of the magnetic energy to the gas internal energy
is expected to be of the order of unity (within an order of magnitude or so).
Such instabilities are known to be disruptive in the fusion context when the
eigenmodes exhibit a substantial displacement of the plasma outer boundary;
such a situation is relevant to magnetically self-confined jets, as the magnetic
field in their outer region is predominantly azimuthal, a configuration most
favorable to the onset of the instability (Sects. 2 and 5). However, the pres-
ence of a velocity gradient in the outer boundary due to the jet bulk motion
is expected to have a substantial stabilizing influence, both in the linear and
nonlinear regimes (Sect. 6).

In its present state, this picture possesses a number of loose ends:

• The stabilizing role of an axial velocity gradient needs to be better under-
stood. Not all modes may be stabilized in the linear regime, depending on
the details of the equilibrium jet configuration, and the nonlinear mecha-
nism identified in the literature is highly idealized and may not be generic.
The one and only simulation of nonlinear stabilization published to date
exhibits a very violent relaxation transient, which may still lead to jet dis-
ruption. On the other hand, this transient is also an indication that the
initial configuration of the simulation is way out of equilibrium, a situation
which may not occur in real jets.

• The role of jet rotation has not yet been correctly investigated. Preliminary
results seem to indicate that it is stabilizing [17]; however, jet rotation may
not be an important dynamical factor in the asymptotic jet propagation
regime.

• Most investigations of pressure-driven instabilities rely on a very simple
prescription of the equation of state, which raises an issue of principle.
Indeed, the very large growth rates usually found for the instability in-
dicate that it develops on time-scales much shorter than the collisional
time-scale, and the use of ideal MHD as well as a polytropic equation of
state may be questioned in such a context, an issue briefly addressed in
Appendix A. A more complex description of the plasma is required to
validate the results obtained so far.

Appendices

A On the Use of Ideal MHD

In astrophysics in general, and jet stability analyses in particular, an MHD
framework is almost always adopted instead of the more precise kinetic one
due to its relative simplicity. The MHD approximation can be applied when
the fluid is locally neutral, when all species can be described by a single
fluid equation (i.e., when the relative drift velocity of species with respect
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to one another is small), and when Ohm’s law is valid. The validity of these
approximations has been discussed elsewhere [18] [22] and will not be repro-
duced here; the interested reader is referred to these books for details.

Furthermore, MHD stability (and jet stability in particular) is often inves-
tigated within the framework of ideal MHD. Indeed, the dynamical time-scales
of interest (including those of the considered instability) is almost always sub-
stantially larger than the particle collision time-scale. Moreover, an isotropic
pressure is often assumed, e.g., through a barotropic equation of state, and
this raises another issue of principle within the framework of ideal MHD,
as, indeed, an isotropic pressure would be expected only if collisions at the
particle level are not neglected.

The isotropic pressure assumption can be justified to some extent by the
fact that plasma microturbulence does limit pressure anisotropy to a factor of
order unity. For example, within the framework of collisionless MHD, pressure
anisotropy is self-limiting (for a recent synthetic discussion of this problem
within the framework of collisionless magnetorotational instability, see Sharma
et al. [21] and references therein). Nevertheless, this provides little support
(if any) to the adoption of a closure in the form of a barotropic or adiabatic
equation of state in a collisionless setting.

The CGL approximation (or other collisionless MHD approximations) ap-
plies when the length-scales and frequencies under consideration are larger
than the ion Larmor radius, and smaller than the ion cyclotron frequency,
respectively. These conditions should be satisfied in jets, but I am not aware
of any investigation of pressure-driven instabilities in this framework. Freid-
berg [12] argues that a simple rule of thumb to estimate the effects of the
assumed closure is to replace the adiabatic index by 0, and to assume incom-
pressibility of the motions within the framework of standard ideal MHD.

B Derivation of the Dispersion Relation

Some intermediate steps in the derivation of the dispersion relation of Sect. 5
are given here. The notations are the same as in this section.

Direct computation of the pressure and magnetic field perturbation gives

δP = −ρoC
2
S [∇ · ξ + Kρξr] , (37)

δB = −Bo [∇ · (ξr + ξl) + ξr(KB + KC)] e‖

−ik‖Bo(ξr + ξl). (38)

This allows us to obtain the perturbation in total pressure and in magnetic
tension:

δPT = −ρo(V 2
A + C2

S)∇ · (ξr + ξl) + iρoC
2
Sk‖ξ‖ −

ρoξr · (V 2
AKB + V 2

AKC + C2
SKρ), (39)
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δT = −V 2
AKC [2∇ · (ξr + ξl) + 2ξr · (KB + KC)] +

ik‖V
2
A [∇ · (ξr + ξl) + 2ξr · KC ] e‖ − k2

‖V
2
A(ξr + ξl). (40)

Furthermore, the equilibrium relation Eq. (16) allows us to eliminate KB

in terms of KC and Kρ = γKP .
The longitudinal component of the linearized momentum equation reduces

to δPT = 0, once contributions of order k‖ξl or ξl/r are neglected in front of
k⊥ξl. This constraint shows that ξl ∼ O(k‖/k⊥ξr, k‖/k⊥ξ‖). It also allows
us to eliminate ∇ · (ξr + ξl) from the remaining two component equations,
which then reduce to Eqs. (32) and (33). In the process, the contribution
of dδPT /dr is shown to be negligible from the assumed ordering relations
|kr| � k⊥ and |Bz/Bθ|2s2|k⊥| � |k‖|, i.e., the magnetic shear stabilizing
term can be neglected in this limit.
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1 Introduction

The instabilities discussed in the previous chapter derived from a loss of me-
chanical equilibrium; those discussed in this chapter derived instead from a
loss of energetic equilibrium. Their behavior is therefore dictated by the depen-
dence of the processes of energy gains or losses on the physical parameters. In
particular, in the case of jets, the most important process with which we have
to deal is that of radiative losses. A first discussion of the possibility of ther-
mal instabilities in an astrophysical plasma was presented by [8]. He considers,
however, a rather nonphysical situation capable only of constant-density (iso-
choric) perturbations. Reference [11] recognized that gaseous systems tend to
maintain constant pressure conditions and derived the correct isobaric insta-
bility criterion. A complete and fully consistent analysis, taking into account
also the effect of several additional physical processes, was then given by [4]. In
the next section, I will give the derivation of the instability condition starting
from a simple physical analysis, a more formal derivation of the full dispersion
relation will be presented in Sect. 3, where I will also discuss the dispersion
relation for the magnetic case. Finally, in the last section, I will briefly discuss
the effects of cooling–heating processes on the Kelvin–Helmholtz instability.

2 Physical Discussion

In an infinite, uniform medium, subject to energy gains and losses, the equi-
librium condition can be written as

L(ρ0, T0) = 0

where ρ0 and T0 are, respectively, the density and temperature of the medium,
while L is a generalized heat-loss function, defined as L = Λ − H, i.e., the
difference between energy losses Λ and energy gains H per unit mass per unit
time. Note that L can be written as a function of the local values of density and
temperature if the medium is optically thin. If we introduce a perturbation
of density δρ and a perturbation of temperature δT , such that the pressure is
kept constant, we will have a corresponding variation of L given by:

δL =
∂L

∂T
δT +

∂L

∂ρ
δρ (1)

The condition of isobaricity, assuming that the perfect gas law is applicable,
can be written as

δT

T0
+

δρ

ρ0
= 0 (2)

Introducing Eq. (2) in Eq. (1), we can write

δL

Λ0
= (LT − Lρ)

δT

T
(3)
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where LT = T0/Λ0∂L/∂T and Lρ = ρ0/Λ0∂L/∂ρ. Here and after, the sub-
script 0 refers to the equilibrium values. If the perturbations of temperature
and of L have opposite signs, the equilibrium is unstable since a decrease
of temperature leads to an increase of losses and, therefore, to a runaway
situation. The instability condition can be written, therefore, as

LT − Lρ < 0 (4)

For checking the validity of the assumption of isobaricity, we have to first
define two typical time scales of the system: the dynamical time scale and the
cooling (heating) time scale. The dynamical time scale τd can be defined as
the, sound crossing time over the perturbation scalelength λ, i.e.,

τd =
λ

cs
(5)

where cs is the sound speed. The cooling (heating) time, scale τr, for a perfect
gas, can be defined as

τr =
p0

(γ − 1)Λ0
(6)

where p0 is the equilibrium pressure and γ is the ratio of specific heats. If the
condition τr >> τd holds, the medium has time to restore pressure equilibrium
over the perturbation, that is, cooling (heating) with a time, scale τr.

Looking at the instability condition (4), we can see that a positive
ρ-derivative increases the tendency towards instability. This condition is of-
ten met in astronomical applications, owing to the binary collision nature of
radiative losses. The unstable mode is often called condensation mode since,
in a cooling perturbation, the condition of isobaricity leads to an increase of
density.

If we include a magnetic field, we have a different behavior of perturba-
tions that are perpendicular to the field with respect to those that are not.
The second involve motions along the field lines that are unimpeded by the
presence of magnetic field and the instability criterion will be equal to the
one derived above. For perturbations perpendicular to the field, we can de-
rive a different instability criterion by following a similar line of thought.
The isobaricity condition can be rewritten by using total (gas plus magnetic)
pressure:

β
δT

T0
+ β

δρ

ρ0
+ 2

δB

B0
= 0 (7)

where β is the ratio between thermal and magnetic pressure and B is the
magnetic field intensity. In addition, the frozen-in condition gives a relation
between density and magnetic field perturbations:

δB

B
=

δρ

ρ
(8)
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The condition for instability can then be written as

LT − β

2 + β
Lρ < 0 (9)

where we assumed that heat-loss mechanisms do not depend on magnetic
field. There may however, be, situations in which there is a dependence of
the function L on the magnetic field, for example, in the case of synchrotron
losses (see e.g. [2]). We can note that, decreasing the value of β, the effect of
the dependence of L on density tends to be less and less important and, in
the limit β → 0, the instability condition becomes the isochoric one [8]

LT < 0 (10)

This behavior can be understood by considering that magnetic field opposes
the plasma compression.

The instability criterion has been generalized to the case when the medium
starts from a nonequilibrium situation by [1]. We consider a gas subject to
heating and cooling given as before by the function L. In this case, however,
we do not restrict ourselves to the case L = 0. The variation of the specific
entropy in the time dt is given by

dS =
dQ

T
= −L

T
dt (11)

Assume that a parcel of gas is slightly perturbed. We denote the difference in
entropy between the parcel and its surrounding by δS, and similarly for all
other variables. Consider local perturbations that satisfy the isobaric condi-
tion, then with δp = 0 we have

d

dt
δS = δ

dS

dt
= −δ

L

T
(12)

If δS and δ(L/T ) have different signs, the parcel entropy tends to evolve away
from the background entropy and we have instability. Thus the instability
criterion is [

∂

∂S

(
L

T

)]

p

< 0 (13)

that can be written in the form (for L0 �= 0)

LT − Lρ < 1 (14)

that can be directly compared with Eq. (4) above.

3 Linear Analysis

In this section, I will give a formal derivation of the dispersion relation for
the thermal instability in a uniform medium, including the effect of thermal
conduction. We start from the nonmagnetic case, and the basic equations are
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dρ

dt
+ ρ∇ · v = 0 (15)

ρ
dv
dt

+ ∇p = 0 (16)

1
γ − 1

dp

dt
− γ

γ − 1
p

ρ

dρ

dt
+ ρL −∇ · (K∇T ) = 0 (17)

where d/dt is ∂/∂t + v · ∇, p, ρ and T are, respectively, pressure, density and
temperature, γ is the ratio of specific heats, and K is the coefficient of thermal
conduction. System (15, 16, 17) has to be complemented by the equation
of state for perfect gases. The equilibrium configuration is characterized by
ρ = ρ0, T = T0, v = 0, and L(ρ0, T0) = 0. Assuming perturbations of the
form

f(r, t) = f̃1 exp(σ̃t + ik̃ · r) (18)

the linearized equations take the form

σ̃ρ̃1 + ρ0ik̃ · ṽ1 = 0 (19)
σ̃ρ0ṽ1 + ikp̃1 = 0 (20)

σ̃

γ − 1
p̃1 −

σ̃γp0

(γ − 1)ρ0
ρ̃1 + ρ0

∂L

∂ρ
ρ̃1 + ρ0

∂L

∂T
T̃1 + K0k

2T̃1 = 0 (21)

p̃1

p0
− ρ̃1

ρ0
− T̃1

T0
= 0 (22)

We can nondimensionalize these equations by measuring density, pressure, and
temperature with their equilibrium values, velocity with the sound speed, time
with the radiative time scale, and length with the length (λr = csτr) crossed
in a radiative time at the sound speed. We introduce, therefore, the following
nondimensional quantities

ρ1 =
ρ̃1

ρ0
, p1 =

p̃1

p0
, T1 =

T̃1

T0
, v1 =

ṽ1

cs

σ = σ̃τr, k = k̃τrcs, α =
(γ − 1)

p0

K0T0

c2
sτr

where α measures the effect of thermal conduction and is the ratio between
the mean free path of conducting particles and the radiative length λr. We
can then rewrite Eqs. (19, 20, 21, 22) in the form

σρ1 + ik · v1 = 0 (23)

σv1 + i
1
γ
kp1 = 0 (24)

σp1 − γσρ1 + (LT − Lρ) + αk2T1 = 0 (25)
p1 − ρ1 − T1 = 0 (26)
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Since k × v1 = 0, we are left with four equations in the four variables ρ1,
p1, T1, and k · v1, and the dispersion relation can be obtained imposing the
vanishing of the determinant of coefficients of the above system of equations.
We then derive the following dispersion relation

σ3 + σ2
(
LT + αk2

)
+

k2

k2
r

σ +
1
γ

k2

k2
r

[
(LT − Lρ) + αk2

]
= 0 (27)

The three roots of the above equation correspond to three modes, one is the
condensation mode, whose physics has been described in Sect. 2, and the
other two correspond to sound waves modified by nonadiabaticity. If cooling–
heating effects are small one root σ1 is real (condensation mode) and the other
two σ2 and σ∗

2 are complex conjugates (sound waves, for a proof see [4]), in
this case

σ1 |σ2|2 = − 1
γ

k2

k2
r

[
(LT − Lρ) + αk2

]
(28)

The condition for instability σ1 > 0 then becomes

LT − Lρ + αk2 < 0 (29)

that corresponds to the isobaric condition 4 modified by the presence of the
stabilizing effect of thermal conduction. In Fig. 1, we plot the growth rate of
the condensation mode as a function of the wavenumber k for different values
of the thermal conduction parameter α.

In the case with no thermal conduction (solid curve), we can see that the
growth rate, in the limit of large wavenumbers, becomes independent from
the wavenumber. In fact, the isobaric condition becomes better and better
verified. Decreasing the wavenumber, the cooling time becomes comparable
to the dynamical time and pressure equilibrium cannot be re established.
Therefore, as the wavenumber tends to zero, we are approaching an isochoric
situation and the behavior of the growth rate depends on whether the isochoric
instability criterion is satisfied or not. In the case presented in Fig. 1, the
parameters are such that the isochoric criterion is not satisfied and the growth
rate tends to zero as k → 0. On the contrary, when the isochoric instability
criterion is satisfied, the growth rate tends to a finite value as k → 0. The
introduction of thermal conduction, as it is shown in the figure, stabilizes large
wavenumbers and implies the existence of a wavenumber at which the growth
rate attains a maximum. This maximum defines the scale of perturbations
that will grow fast and will dominate the evolution.

The introduction of a magnetic field modifies the basic equations intro-
ducing the magnetic force term in the momentum equation and the induction
equation for the magnetic field evolution. In addition, thermal conduction be-
comes anisotropic with different conductivities along and across the field lines.
The dispersion relation takes the following form
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Fig. 1. Plot of the growth rate σ as a function of the wavenumber k. The four
curves are for four different values of the thermal conduction parameter α (α = 0
solid curve, α = 0.01 dotted curve, α = 0.1 dashed curve, α = 1 dashed-dotted curve).
The parameters are LT = 0.5, Lρ = 1, γ = 5/3

σ5 +
k2

k2
r

(
LT + α‖k

2
‖ + α⊥k2

⊥

)
σ4 +

k2

k2
r

(
1 +

2
γβ

)
σ3+

+
1
γ

k2

k2
r

[
LT − Lρ + α‖k

2
‖ + α⊥k2

⊥ +
2
β

(
LT + α‖k

2
‖ + α⊥k2

⊥

)]
σ2+

k2

k2
r

k2
‖

k2
r

2
γβ

σ +
k2

k2
r

k2
‖

k2
r

2
γβ

1
γ

(
LT − Lρ + α‖k

2
‖ + α⊥k2

⊥

)
= 0 (30)

where

α‖ =
(γ − 1)

p0

K0‖T0

c2
sτr

, α⊥ =
(γ − 1)

p0

K0⊥T0

c2
sτr

,

K0‖ and K0⊥ are the conductivities, respectively, along and across magnetic
field lines and k‖ and k⊥ are the components of the wavevector, respectively,
along and across magnetic field lines.

The dispersion relation is of fifth-order and its solution represent two mod-
ified fast modes, two modified slow modes, and the condensation mode. We
can find approximate solutions in the isobaric limit k2/k2

r � 1. With the
additional assumption k2

‖/k2
r � 1, we obtain for the growth rate of the con-

densation mode the following expression:

σ = − 1
γ

(
LT − Lρ + α‖k

2
‖ + α⊥k2

⊥

)
(31)
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that is equal to the isobaric growth rate of the condensation mode in the case
without magnetic field, with the only modification of the anisotropic thermal
conductivity. When the angle between the wavevector and magnetic field ap-
proaches π/2, the condition k2

‖/k2
r � 1 becomes invalid and the behavior of

the growth rate depends on whether the instability criterion for perpendicular
wavevector is satisfied or not. If it is not satisfied the growth rate tend to zero;
in the other case it tends to the value

σ =
1
γ

[
LT − Lρ + α‖k

2
‖ + α⊥k2

⊥ +
2
β

(
LT + α‖k

2
‖ + α⊥k2

⊥

)]

In Figs. 2 and 3, we show the behavior of the growth rate as a function of
the parallel component of the wavenumber, keeping the fixed total wavenum-
ber k = 4, respectively, for the cases without and with thermal conduction.
The different curves correspond to different values of LT going from LT = −2
(solid curve) to LT = 0.5 (dash-dotted curve). In the case without thermal
conduction, we can see that, as k‖/k → 1, the growth rate tends to the
value given by Eq. (31). For k‖ → 0, we have instead the different behaviors
described above. Thermal conduction, being anisotropic and larger in the par-
allel direction, introduces a stabilization of large parallel wavenumbers only.
The maximum growth rate is then found for structures that are elongated in
the field direction.

Fig. 2. Plot of the growth rate for the magnetized case versus the component of
wavenumber parallel to magnetic field. The parameters are k = 4, β = 0.067, Lρ = 1,
no thermal conduction. The different curves refer to different values of LT (LT = −2
solid, LT = −1 dotted, LT = 0 dashed, LT = 0.5 dash-dotted)
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Fig. 3. Plot of the growth rate for the magnetized case versus the component
of wavenumber parallel to magnetic field. The parameters are k = 4, β = 0.067,
Lρ = 1, α‖ = 0.1, and α⊥ = 0.01 . The different curves refer to different values of
LT (LT = −2 solid, LT = −1 dotted, LT = 0 dashed, LT = 0.5 dash-dotted)

I conclude this analysis with a short consideration on the evolution of
thermal instabilities. Typically it may lead to a two-phase situation, in which
cool condensations are embedded into a hot and low-density medium. This
structure can be reached if the temperature and density in the two phases
correspond to stable energetic equilibria.

4 Influence of Radiative Losses on the KH Instability

Besides driving possible instabilities, the cooling–heating effects considered
above may also influence the behavior of Kelvin–Helmholtz instabilities. This
aspect, in the context of jets from YSO, has been considered by [5, 6] in
the linear case and by [3, 7, 9, 10] for the nonlinear evolution. Reference [6]
find that reflected modes are the most influenced by the presence of cooling
effects that tend to stabilize them. The growth rates differ from the adiabatic
case starting from τr/τd < 10. Moreover, according to their analysis, thermal
modes, when they are unstable, may have growth rates larger than KH modes.
The stabilizing behavior found by [6] may, however, be dependent on the form
of radiative losses considered, i.e., on its variation with temperature. Different
dependences may lead to different behaviors that could also be destabilizing
[5]. This dependence on the form of radiative losses is present also in numerical
simulations of the nonlinear evolution. However, we may say that, in general
radiation increases the time taken for shocks to develop, reduces the strength
of these shocks, and reduces the rate of decollimation of the momentum flux.
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1 Introduction

In a radiative shock wave, the cooling time scale due to cooling processes be-
comes comparable to or less than the sound crossing time behind the wave
front. Under these circumstances, the postshock flow may be subject to a
global thermal instability (more precisely, an overstability given to the com-
plex nature of the eigenvalues) revealed by rapid variations of the cooling time
scale with the shock speed. The instability drives the shock front to oscillate
with respect to its stationary position, causing fluctuations in the amount of
radiation emitted from the postshock region.

Theoretical investigations of the instability date back to the early work
of [4, 7, 18] and has been fostered by its pertinence to a number of different
astrophysical environments including magnetic cataclysmic variables [6, 31],
jets from young stellar objects [8], magnetospheric accretion in T-Tauri stars
[5], colliding stellar winds [1, 23], and supernova remnants [3, 15, 27]. Similarly,
a relevant issue arises in questioning the validity of steady shock models with
shock velocities vs � 130 km s−1, routinely used in interpreting emission line
observations from interstellar shocks [13, 14].

In an old paper, [4] (CI hereafter) presented the linear stability analysis
of planar radiative shocks with volumetric cooling rate given by a cooling
function in the form Λ ∝ ρ2Tα. CI showed that the shock has multiple modes
of oscillation with increasing frequency and the stability of a given mode is
tied to the value of the cooling exponent α. Higher values of α were shown to
stabilize the shock, whereas lower values of α promote the growth of instability.
In this respect, the fundamental mode becomes unstable for α � 0.4, while
the first and second harmonics are destabilized when α � 0.8. Higher order
harmonics were not considered by CI.

Since then, the issue of stability has been investigated under a variety
of different regimes: cyclotron emission [11, 29, 30], spherical geometry [2],
gravitational effects [9], magnetic fields [26], two temperature flows [12], and
multiple cooling functions [21, 22]. Additional references can be found in the
review by [31].

Moreover, considerable efforts have been devoted to the solution of the
full time-dependent problem by mean of numerical simulations. Indeed, the
existence of the instability was first revealed in the numerical computations
of [7, 16]. Additional work may be found [10, 17, 19, 24, 25, 28] and references
therein. In [10], for instance, the critical values of α (above which oscillations
are damped) were shown to lie somewhere in the range 1/3 � α � 1/2 and
1/2 � α � 0.6 for the fundamental and first overtone, respectively. The one-
dimensional calculations of [24] showed that for flows incident into a wall,
large amplitude oscillations are damped when α � 0.5. These results were
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recently extended by [25] to a more realistic cooling function. A quantita-
tive comparison between theoretical predictions and numerical models can be
found in [19], where it is shown that most overtones found in the simulation
can be positively matched with the ones given by linear analysis, provided
suitable boundary conditions are given.

The paper is organized as follows. In Sect. 2, the relevant equations are
introduced and the stability properties of 1-D planar radiative shocks are
reviewed. In Sect. 3, the transition to the nonlinear regime using numerical
simulations is presented. Finally, in Sect. 4, we discuss some potential impli-
cations for a variety of astrophysical scenario.

2 Linear Theory

2.1 Statement of the Problem

Consider a one-dimensional supersonic flow with uniform density ρin and ve-
locity vin, initially propagating in the negative x-direction, i.e., vin = −|vin|.
The flow is brought to rest by the presence of a rigid wall located at x = 0,
and a shock wave forms at some finite distance xs from the wall (see Fig. 1).
Across the shock, the bulk kinetic energy of the incoming gas is converted into

3

2

1

0

–1
0.2 0.4 0.6

x

v/ ⎜vin⎮

Log (ρ /ρin)

Log (T / Tin)

0.8 1.0 1.2

Fig. 1. Steady-state profiles for density, temperature, and velocity when α = 0.
The “wall” is located at x = 0 and supersonic gas flows from the right to the left.
Flow variables are normalized to their inflow values, and the abscissa is expressed
in units of shock height
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thermal motion and the flow decelerates to subsonic velocities. Throughout
the postshock region, the excess thermal energy is radiated away by cooling
processes which, for our purposes, are assumed optically thin. In this approx-
imation and to make the problem tractable, we make the further assumption
that thermal losses can be described by a simple power-law cooling function
Λ(ρ, p) ∝ ρ2Tα where α is a free parameter of the problem. In its simplest
form, the problem can be treated using the Euler equations of gas-dynamics:

∂ρ

∂t
+ ρ

∂v

∂x
+ v

∂ρ

∂x
= 0 , (1)

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
= 0 , (2)

∂p

∂t
+ v

∂p

∂x
+ γp

∂v

∂x
= −(γ − 1)Cρ2

(
p

ρ

)α

, (3)

where ρ and p are, respectively, the fluid density and pressure and γ = 5/3
is the constant specific heat ratio. By proper renormalization of the constant
C, one can express density and velocity in units of their inflow values, i.e., ρin

and |vin|. With this choice, the flow variables immediately ahead of the shock
become ρ = 1, v = −1, and p = 1/(γM2), with M being the upstream Mach
number. Furthermore, lengths are conveniently normalized to the stationary
thickness of the cooling region, so that the equilibrium position of the shock
is x = 1.

The steady state condition is dictated by an exact balance between dynam-
ical and cooling time scales. In other words, a fluid element travels through
the postshock region and radiates all its internal energy by the time it reaches
the wall, where the temperature drops to zero. In equilibrium, flow quanti-
ties immediately ahead and behind the shock (denoted with the subscript s)
satisfy the Rankine-Hugoniot jump conditions:

− vs =
1
ρs

=
γ − 1
γ + 1

+
2

(γ + 1)M2
, ps =

2
γ + 1

− γ − 1
γ(γ + 1)M2

, (4)

If, however, the postshock temperature is slightly increased (for example),
a longer cooling path will result and the excess pressure will force the shock
to move away from the wall. In the frame of the shock, the velocity of the
incoming gas will increase even further and the postshock temperature will
rise according to the square of the preshock velocity. If radiative losses are
described by a decreasing function of the temperature, the cooling time will
increase and the shock will continue to move away from the wall.

2.2 Perturbative Analysis

A perturbative study is carried out by properly linearizing Eqs. (1, 2, 3)
around the steady-state solutions denoted by ρ0, v0, and p0. The perturbed
location of the shock front is written as
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xs = 1 +
ε

δ
eδt , (5)

where xs = 1 is the shock equilibrium position, ε is the magnitude of the
perturbation, and δ is a complex eigenfrequency to be determined.

Following [21], it is convenient to write δ = δR + iδI, where the real part
δR gives the growth/decay term, while δI represents the oscillation frequency.
The nature of the instability is determined by the sign of δR: modes with
δR < 0 are stable, while modes with δR > 0 are unstable.

We write a generic flow quantity as

q(ξ, t) = q0(ξ)
(
1 + λq(ξ)εeδt

)
, (6)

where q ∈ {ρ, v, p}, q0(ξ) is the corresponding steady-state value and the
complex function λq(ξ) describes the effects of the perturbation. Here ξ is a
spatial coordinate normalized so that ξ = 1 at the shock and ξ = 0 at the
wall:

ξ =
x

xs
≈ x
(
1 − ε

δ
eδt
)

+ O(ε2) . (7)

The fluid equations are linearized in a frame of reference which is co-
moving with the shock; in this frame the derivatives of a flow variable become

∂

∂t
→ ∂

∂t
+

∂ξ

∂t

∂

∂ξ
,

∂

∂x
→ ∂ξ

∂x

∂

∂ξ
. (8)

Therefore, retaining only terms up to first-order in ε, one has

∂q

∂t
≈
(
q0λqδ − ξq′0

)
εeδt , (9)

∂q

∂x
≈ q′0 +

(
q′0λq + q0λ

′
q −

q′0
δ

)
εeδt , (10)

where a primed quantity denotes a derivative with respect to ξ.
The steady-state solution is recovered by collecting the zeroth order terms

in the Euler equations; conservation of mass and momentum is trivially ex-
pressed by

ρ0v0 = −1 , −v0 + p0 = m, (11)

where the integration constants on the right hand sides may be evaluated
from the preshock values; hence m = 1+1/(γM2). The pressure equation (3)
with ∂p/∂t = 0 provides the explicit dependence on the spatial coordinate.
After expressing ρ0 and p0 as functions of v0 alone using Eq. (11), one finds
the closed integral form

ξ(v0) =
f(v0)
f(vs)

, with f(v) =
∫ v

0

(−y)2−α [y + γ(m + y)]
(m + y)α

dy , (12)

and vs = −(1 + 3/M2)/4 is the fluid velocity immediately behind the shock
(Eq. (4)). According to the normalization units introduced in the previous
subsection, the constant C in Eq. (3) takes the value C = −f(vs)/(γ − 1).
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Results pertinent to this section are evaluated in the strong shock limit,
M → ∞, so m = 1, vs = −1/4 and α becomes the only free parameter in
the problem.

Although Eq. (12) can be solved analytically for some specific values of
the cooling index α (CI), one has to resort to numerical quadrature in the
general case. Note that a steady-state solution is possible only if the integral
converges, that is, if α < 3. For higher values of α, the gas cannot cool to zero
temperature in a finite time. Equation (12) can be inverted numerically to
express the postshock steady flow velocity v0 as a function of ξ. The resulting
steady-state profiles are shown in Fig. 1.

The first-order terms in ε provide three coupled complex differential equa-
tions for the perturbations; using the unperturbed postshock velocity v0 as
the independent variable, they are

dλρ

dv0
+

dλv

dv0
= − ξ

v2
0

− λρδ

v0

dξ

dv0
, (13)

v0
dλv

dv0
− p0

dλp

dv0
= −λvδ

dξ

dv0
+

ξ

v0
+ λp − 2λv − λρ , (14)

v0p0

(
γ

dλv

dv0
+

dλp

dv0

)
= (v0 + γp0) Q − p0λpδ

dξ

dv0
+ ξ , (15)

where dξ/dv0 is given by straightforward differentiation of Eq. (12) and Q =
(2 − α)λρ + (α − 1)λp − λv + 1/δ.

For a given value of α, Eqs. (13) through (15) have to be solved by inte-
grating from the shock front (where v0 = vs) to the wall (where v0 = 0). The
eigenmodes of the system are determined by imposing appropriate boundary
conditions to select the physically relevant solutions. At the shock front, the
jump conditions for a strong shock (M → ∞) apply [12, 21]:

λρ = 0 , λv = −3 , λp = 2 . (16)

At the bottom of the postshock region (ξ = 0), the relevant physical
solutions must satisfy the stationary wall condition, namely, that the flow
comes to rest and the velocity must be oscillation-free. This requires that
both the real and imaginary parts of λv(v0) vanish at v0 = 0. The complex
frequencies δ for which such solutions possibly identify the eigenmodes of the
system.

In practice, one needs to minimize the real function of two variables
|λv(0)|(δR, δI) =

(
λ2

v,R(0) + λ2
v,I(0)

)1/2, that is, the magnitude of the velocity
perturbation at the bottom of the postshock region. The values of λv,R(0) and
λv,I(0) are obtained by direct numerical integration of Eqs. (13, 14, 15) for
a given pair (δR, δI), see Fig. 2. A preliminary coarse search with trial values
of δR and δI reveals that, for a given value of α, an indefinitely long series
of modes exists. Following CI, modes are labeled by increasing oscillation fre-
quency, so that n = 0 corresponds to the fundamental mode, n = 1 to the
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Fig. 2. Contour of log |λv| at ξ = 0 in the complex eigenplane δ = δR+iδI for α = −1
(left) and α = 1 (right). Physical admissible modes are located where |λv| → 0

first overtone, n = 2 to the second overtone, and so on. The exact position of
each mode n, (δ(n)

R , δ
(n)
I ), can be iteratively improved by repeating the search

on finer subgrids (in the complex δ plane) centered around the most recent
iteration of δ

(n)
R , δ

(n)
I .

It is important to realize that the physical admissible modes have been
identified by imposing the stationary wall condition at ξ = 0. This constraint
yields quantized modes of oscillation distinguished by their frequencies and
the number of nodes and antinodes appearing in the appropriately scaled
postshock structure, [32]. This behavior is thus similar to a standing vibrat-
ing string (or open pipe) fixed at one end. A typical astrophysical scenario
corresponds to a standing accreting shock front formed above the surface of
a white dwarf. At the stellar surface, the shocked flow is brought to rest (the
wall at the closed end) whereas the shock can freely move (the open end).

Figure 3 shows the real and imaginary parts of the first eight modes for
values of α uniformly distributed in the range −2 ≤ α < 2.

A mode is stable if the real part of the corresponding eigenvalue has nega-
tive sign, and unstable otherwise. High-frequency modes are characterized by
growth rates which decrease faster than low-frequency ones for increasing α.
Hence, the fundamental mode (n = 0) has the smallest growth/damping rate
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Fig. 3. Growth rates (left) and oscillation frequencies (right) for the first eight modes
as function of α. The solid line represents the fundamental mode n = 0, whereas
the different symbols (described by the legend in the upper-right portion of the plot)
correspond to the seven overtones 1 ≤ n ≤ 7. Eigenmodes with δR < 0 are stable,
whereas modes with δR > 0 are unstable

for α � 1, but the smallest damping rate for α � 1. Modes with n ≥ 1 have
monotonically decreasing oscillation frequencies while, for the fundamental
mode, δI reaches a maximum value at α ≈ 1.1 and decreases afterward.

Critical α

For each mode n, a critical value of the cooling index, α
(n)
c , may be defined,

such that δ
(n)
R = 0 when α = α

(n)
c . Hence, the nth mode is stable for α > α

(n)
c

and unstable when α < α
(n)
c , see Fig. 4. The value of the critical α is computed

by interpolating α with a quartic polynomial passing through the two pairs
of values across which δR changes sign. Thus the fundamental mode becomes
stable for α > 0.388, the first harmonic for α > 0.782, and so on. Interestingly,
the sequence of critical α is not monotonic with increasing n. Finally, notice
that all (eight) modes become eventually stable for α � 0.92.

Linear Fit

By inspecting Fig. 3, one can easily see that, for a given α, the oscillation
frequencies of the different modes are approximately equally spaced as n in-
creases. In this respect, they resemble the modal frequencies of a pipe open
at one end [21, 26, 32] and can be described by a simple linear fit of the form

δ
(n)
I = δ̃

(0)
I + nΔδ̃I, (17)

with a small residual, � 0.5%. In Eq. (17), δ̃
(0)
I is the “fitted” fundamental

frequency and Δδ̃I is a frequency spacing depending on the cooling index α.
Δδ̃I is monotonically decreasing for increasing α. Values of δ̃

(0)
I and Δδ̃I are

given in Table 1.
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Fig. 4. Critical value of the cooling index as function of the mode number n. For a
given mode n, values of α > αc have negative growth rates and thus are stable

Table 1. Fitted fundamental frequencies and spacing for the linear fit, Eq. (17)

α

−2 −3/2 −1 −1/2 0 1/2 1 3/2

δ̃
(0)
I 0.2183 0.2352 0.2502 0.2642 0.2774 0.2898 0.3011 0.3076

Δδ̃I 0.7486 0.7324 0.7129 0.6882 0.6553 0.6088 0.5359 0.3998

3 Nonlinear Dynamics

The results from Sect. 3 indicate that radiative shocks in real astrophysical
settings may be linearly unstable and thus far from an equilibrium configura-
tion. This calls for the investigation of the full time-dependent problem where
nonlinear effects may play a major role in the shock dynamics.

In what follows, the radiative shock evolution is analyzed through a set of
numerical simulations for different values of the cooling index α. We consider
the shock in its initial steady-state, with the front being located at x = 1. For
the sake of simplicity, flow quantities at the upper and the lower boundaries
are held fixed to their initial values (see [19] for a comprehensive discussion on
the choice of the boundary conditions). Numerical integration of Eqs. (1)–(3)
is carried using the PLUTO code [20], a high-resolution Godunov-type code
for astrophysical fluid dynamics. The onset of instability is triggered by the
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discretization error of the numerical scheme and no external “ad hoc” pertur-
bations are introduced, unless otherwise stated.

Issues concerning grid resolution effects must not be underestimated.
Sharp density gradients can be described with relatively limited accuracy be-
cause of numerical diffusion effects that cause high-density regions to “leak”
mass into neighboring low-density zones. Since the cooling process is propor-
tional to the square of density, radiative losses will generally be overestimated,
causing abnormal, excessive cooling. Although this issue is intrinsic to any grid
of finite size and cannot be completely removed, higher resolutions can con-
siderably mitigate the problem. Furthermore, small-amplitude oscillations of
the shock front can be adequately captured on finer grids.

3.1 Results

Figure 5 shows the density evolution in a time–space diagram for α = 0.
During the early phases of evolution, the shock remains close to its equilib-
rium position, but around t � 30 small departures from the initial condition
begin to manifest. This stage is characterized by a linear growth of the per-
turbation: small density and pressure fluctuations tend to be enhanced as a
consequence of radiation effects, promoting faster cooling in regions of higher
density (Λ ∝ ρ2). The lack of pressure support, in fact, amplifies strong non-
linear disturbances eventually steepening to form secondary shocks. These
secondary fronts propagate back and forth throughout the upstream region
and collide with the primary shock forcing the system into an oscillatory state.
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Fig. 5. Time–space diagram of the density logarithm for α = 0. Darker shades
represent region of high density
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For t � 80, the amplitude of the oscillations begins to saturate and nonlinear
effects become dominant by t ≈ 100. During this phase, the largest oscillation
peaks reach ∼ 40% of the initial equilibrium position. For large t, the shock
motion undergoes large amplitude oscillations upon which lower amplitude,
high frequency modes superpose. In general, as shown in [19], the dominant
mode of oscillation may be identified with the first overtone when α � 0.7.
Little power (� 10%) resides in the fundamental mode.

The α = 0.5 value (Fig. 6) is of particular astrophysical relevance, since it
describes optically thin bremsstrahlung, which is the main source of radiative
losses at temperatures of the order of 108–109 K, typical in accretion shocks
in magnetic cataclysmic variables. Figure 6 shows that the solution remains
close to the initial steady-state values for a longer time and unstable oscil-
lations grow at a smaller rate. Indeed, when compared to the α = 0 case,
the oscillation amplitudes in the saturated regime are reduced by a factor
of approximately 50%. It should be emphasized, however, that the transition
to nonlinearity and the onset of the oscillatory cycle may depend crucially
on the choice of the lower boundary condition, as observed in [19], especially
when 0.4 � α � 0.8. The use of a cold dense gas layer (as opposed to the
“fixed” boundary used here), for instance, acts as an absorber to incoming
perturbations reducing the amplitude of the reflected waves. Even in presence
of external “ad hoc” perturbations, the use of a cold dense layer may inhibit
the growth of instability when α � 0.45.
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Fig. 6. Time–space diagram of the density logarithm for α = 0.5. Darker shades
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Finally, for α = 1 (Fig. 7), grid perturbations are quenched and the sys-
tem remains in equilibrium. This conclusion is confirmed even when external
perturbation are introduced in the postshock flow (not shown here).

4 Discussion

A review of the instability of planar radiative shocks with a power-law cooling
function Λ ∼ ρ2Tα has been presented. Both linear stability properties and
nonlinear time-dependent calculations have been reviewed.

Results from linear theory indicate that, for a given value of the cool-
ing exponent α, multiple discrete modes of oscillation exist and the real and
imaginary parts of the first eight eigenfrequencies have been derived. The
overstable modes are labeled in the order of increasing oscillation frequency
so that n = 0 corresponds to the fundamental mode, n = 1 to the first over-
tone, n = 2 to the second overtone, and so on. The stability criterion of a
particular mode is expressed by the condition α > α

(n)
c , where α

(n)
c is the

critical value of the cooling index for the nth mode. For the fundamental
mode, for example, α

(0)
c = 0.388, whereas for the first and second harmonic

α
(1)
c = 0.782 and α

(2)
c = 0.795, respectively. A general trend towards stability

exists for increasing α, so that all modes are stabilized for α � 0.92. It has
been shown that oscillation frequencies are linearly proportional to the mode
number n, a behavior similar to the quantized modes in a pipe.
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The perturbative study has been complemented by several numerical simu-
lations using the PLUTO code. The shock evolution has been followed through
the linear and nonlinear phases for different values of α. These results agree
with the perturbative study and show that the shock oscillations saturate at
a finite amplitude and the system evolves in a quasi periodic cycle of collapse
and reformation of the front. The amplitude of the oscillations can exceed
∼ 40% of the shock equilibrium position and decrease for larger values of α.
At α = 0.5, the largest oscillations during the saturated phase are reduced to
∼ 20% of the initial shock position. For α = 1, the shock is stable and initial
perturbations are damped on a characteristic time scale roughly proportional
to the e-folding time of the first overtone. The late evolutionary phases reveal
that the first overtone is the dominant mode of oscillation.

In spite of the oversimplifying assumptions adopted in this study, these re-
sults show a number of interesting consequences for a variety of astrophysical
settings. Radiative shocks with velocities vs � 130 km s−1 are not uncom-
mon in jets from young stellar objects, supernova remnants in the radiative
phase, magnetospheric accretion in T-Tauri stars, and colliding stellar winds
in relatively close binary systems. For these systems, the shocked interstel-
lar gas reaches temperatures in the range 105–107 K and cools mainly by
line emission, for which α < −0.5. Under these conditions, radiative shocks
are likely to show unstable behavior in all modes and phenomenological in-
terpretations based on steady-state models become of questionable validity
[13, 14]. Although inclusion of transverse magnetic fields extends the range
of stability [26], the global thermal instability of radiative shock waves may
still be important in interpreting a number of distinct observational features,
such as emission-line ratios observed in interstellar radiative shocks [8], mix-
ing between hot and cold material in colliding winds [1, 23], the filamentary
structures observed in supernova remnants [3, 27], and so on.

Less conclusive assertions can be made for standing shocks in the accretion
columns of Polar and Intermediate Polar systems. At temperatures of the
order of 108–109 K, the X-ray emission is primarily determined by optically
thin bremsstrahlung, although cyclotron and Compton cooling may not be
neglected [21]. However, in the simple case where radiative losses are due to
bremsstrahlung cooling only, α ≈ 0.5, the dynamics of the shock may be
influenced by the interaction with the upper photospheric layers of the white
dwarf [6]. Hence realistic models of accretion columns may require a more
complex treatment of the lower boundary and additional physical processes.
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